Structure Design and Assessment of a Floating Foundation for Offshore Wind Turbines

Qi Ye, Shanshan Cheng, Boksun Kim, K. Collins, G. Iglesias
{"title":"Structure Design and Assessment of a Floating Foundation for Offshore Wind Turbines","authors":"Qi Ye, Shanshan Cheng, Boksun Kim, K. Collins, G. Iglesias","doi":"10.1115/iowtc2019-7594","DOIUrl":null,"url":null,"abstract":"This paper summarizes the assessment of the structural analysis and design of a floating foundation for offshore floating wind turbine (FWT) based on DNVGL standard and Eurocode in terms of economy and reliability. The wind loads are calculated using empirical equations. The wave loads are obtained and verified using various methods including hand calculation, AQWA and Flow-3D. It is found that the shell thickness could be reduced significantly by introducing the stiffeners (stringer or ring), which can decrease the weight of the hull and lower the cost. While DNVGL and Eurocode yield similar design solutions if using plane shell structures, Eurocode significantly underestimates the buckling resistance of stiffened cylindrical shells.","PeriodicalId":131294,"journal":{"name":"ASME 2019 2nd International Offshore Wind Technical Conference","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2019 2nd International Offshore Wind Technical Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/iowtc2019-7594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper summarizes the assessment of the structural analysis and design of a floating foundation for offshore floating wind turbine (FWT) based on DNVGL standard and Eurocode in terms of economy and reliability. The wind loads are calculated using empirical equations. The wave loads are obtained and verified using various methods including hand calculation, AQWA and Flow-3D. It is found that the shell thickness could be reduced significantly by introducing the stiffeners (stringer or ring), which can decrease the weight of the hull and lower the cost. While DNVGL and Eurocode yield similar design solutions if using plane shell structures, Eurocode significantly underestimates the buckling resistance of stiffened cylindrical shells.
海上风力机浮式基础结构设计与评价
本文总结了基于DNVGL标准和欧洲规范对海上浮式风力机浮式基础结构分析与设计的经济性和可靠性评价。采用经验方程计算风荷载。波浪荷载通过手工计算、AQWA和Flow-3D等多种方法得到并验证。研究发现,引入加强筋(纵筋或环筋)可以显著减小船体厚度,减轻船体重量,降低成本。虽然DNVGL和Eurocode在使用平面壳结构时给出了类似的设计方案,但Eurocode明显低估了加劲圆柱壳的抗屈曲能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信