Towards an automatic generalized machine learning approach to map lava flows

C. Corradino, E. Amato, F. Torrisi, C. Negro
{"title":"Towards an automatic generalized machine learning approach to map lava flows","authors":"C. Corradino, E. Amato, F. Torrisi, C. Negro","doi":"10.1109/CNNA49188.2021.9610813","DOIUrl":null,"url":null,"abstract":"Volcano-related resurfacing processes can be monitored by complementary using radar and optical sensors. Combining both data sources with machine learning (ML) approaches is fundamental to automatically extract volcano-related features. Here, a generalized ML approach is developed in Google Earth Engine (GEE) to map lava flows in both near-real time (NRT) and no-time critical (NTC) time scales. A first attempt towards a generalized classification to automatically map new lava flows is proposed.","PeriodicalId":325231,"journal":{"name":"2021 17th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 17th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA49188.2021.9610813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Volcano-related resurfacing processes can be monitored by complementary using radar and optical sensors. Combining both data sources with machine learning (ML) approaches is fundamental to automatically extract volcano-related features. Here, a generalized ML approach is developed in Google Earth Engine (GEE) to map lava flows in both near-real time (NRT) and no-time critical (NTC) time scales. A first attempt towards a generalized classification to automatically map new lava flows is proposed.
一种自动广义机器学习方法来绘制熔岩流图
与火山有关的重铺过程可以通过雷达和光学传感器的互补来监测。将这两种数据源与机器学习(ML)方法相结合是自动提取火山相关特征的基础。本文在谷歌Earth Engine (GEE)中开发了一种广义ML方法,用于在近实时(NRT)和非时间临界(NTC)时间尺度上绘制熔岩流。提出了一种用于新熔岩流自动映射的广义分类方法的首次尝试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信