H. Pastor, Karina Valdivia Delgado, Valdinei Freire, L. Barros
{"title":"Políticas Aproximadas e Parciais Sensíveis a Risco para o Controle da Propagação de Doenças Infecciosas","authors":"H. Pastor, Karina Valdivia Delgado, Valdinei Freire, L. Barros","doi":"10.5753/eniac.2022.227062","DOIUrl":null,"url":null,"abstract":"Os Processos de Decisão de Markov (MDPs) podem ser usados para controlar a propagação de doenças infecciosas e encontrar uma política ótima de controle de vacinação. No entanto, por se tratar de um problema que envolve vidas, é necessário levar em consideração a atitude do agente em relação ao risco. Assim, neste trabalho, são usados MDPs sensíveis ao risco com o modelo compartimental SIR e são propostos dois algoritmos eficientes para encontrar políticas de vacinação otimizadas que permitam controlar a propagação de uma doença infecciosa, ou seja, selecionar o número de indivíduos que devem ser vacinados a cada período considerando um parâmetro que representa a atitude frente ao risco. A primeira solução proposta encontra uma política de vacinação que é parcial e ótima dada uma determinada atitude de risco. A segunda solução proposta é aproximada e assim pode resolver problemas ainda maiores. Os resultados mostram que: (i) as políticas de vacinação dependem não apenas da taxa básica de reprodução R0, como esperado, mas também do custo e da atitude em relação ao risco de um agente; e (ii) ambas as soluções obtêm um grande ganho de tempo de execução e pouca perda de qualidade quando comparadas com as políticas completas e não aproximadas.","PeriodicalId":165095,"journal":{"name":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/eniac.2022.227062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Os Processos de Decisão de Markov (MDPs) podem ser usados para controlar a propagação de doenças infecciosas e encontrar uma política ótima de controle de vacinação. No entanto, por se tratar de um problema que envolve vidas, é necessário levar em consideração a atitude do agente em relação ao risco. Assim, neste trabalho, são usados MDPs sensíveis ao risco com o modelo compartimental SIR e são propostos dois algoritmos eficientes para encontrar políticas de vacinação otimizadas que permitam controlar a propagação de uma doença infecciosa, ou seja, selecionar o número de indivíduos que devem ser vacinados a cada período considerando um parâmetro que representa a atitude frente ao risco. A primeira solução proposta encontra uma política de vacinação que é parcial e ótima dada uma determinada atitude de risco. A segunda solução proposta é aproximada e assim pode resolver problemas ainda maiores. Os resultados mostram que: (i) as políticas de vacinação dependem não apenas da taxa básica de reprodução R0, como esperado, mas também do custo e da atitude em relação ao risco de um agente; e (ii) ambas as soluções obtêm um grande ganho de tempo de execução e pouca perda de qualidade quando comparadas com as políticas completas e não aproximadas.