Complexity of Unordered CNF Games

Md Lutfar Rahman, Thomas Watson
{"title":"Complexity of Unordered CNF Games","authors":"Md Lutfar Rahman, Thomas Watson","doi":"10.1145/3397478","DOIUrl":null,"url":null,"abstract":"The classic TQBF problem is to determine who has a winning strategy in a game played on a given conjunctive normal form formula (CNF), where the two players alternate turns picking truth values for the variables in a given order, and the winner is determined by whether the CNF gets satisfied. We study variants of this game in which the variables may be played in any order, and each turn consists of picking a remaining variable and a truth value for it. For the version where the set of variables is partitioned into two halves and each player may only pick variables from his or her half, we prove that the problem is PSPACE-complete for 5-CNFs and in P for 2-CNFs. Previously, it was known to be PSPACE-complete for unbounded-width CNFs (Schaefer, STOC 1976). For the general unordered version (where each variable can be picked by either player), we also prove that the problem is PSPACE-complete for 5-CNFs and in P for 2-CNFs. Previously, it was known to be PSPACE-complete for 6-CNFs (Ahlroth and Orponen, MFCS 2012) and PSPACE-complete for positive 11-CNFs (Schaefer, STOC 1976).","PeriodicalId":198744,"journal":{"name":"ACM Transactions on Computation Theory (TOCT)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computation Theory (TOCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3397478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The classic TQBF problem is to determine who has a winning strategy in a game played on a given conjunctive normal form formula (CNF), where the two players alternate turns picking truth values for the variables in a given order, and the winner is determined by whether the CNF gets satisfied. We study variants of this game in which the variables may be played in any order, and each turn consists of picking a remaining variable and a truth value for it. For the version where the set of variables is partitioned into two halves and each player may only pick variables from his or her half, we prove that the problem is PSPACE-complete for 5-CNFs and in P for 2-CNFs. Previously, it was known to be PSPACE-complete for unbounded-width CNFs (Schaefer, STOC 1976). For the general unordered version (where each variable can be picked by either player), we also prove that the problem is PSPACE-complete for 5-CNFs and in P for 2-CNFs. Previously, it was known to be PSPACE-complete for 6-CNFs (Ahlroth and Orponen, MFCS 2012) and PSPACE-complete for positive 11-CNFs (Schaefer, STOC 1976).
无序CNF游戏的复杂性
经典的TQBF问题是确定在给定的合取范式公式(CNF)上进行的博弈中谁具有获胜策略,其中两个参与者轮流以给定的顺序为变量选择真值,并且获胜者取决于CNF是否得到满足。我们研究了这个游戏的变体,其中变量可以以任何顺序进行,每个回合包括选择一个剩余的变量和它的真值。对于变量集被分成两半且每个参与者只能从自己的一半中选择变量的版本,我们证明了问题对于5-CNFs是pspace完全的,对于2-CNFs是P完全的。以前,已知对于无边界宽度cnf是pspace完全的(Schaefer, STOC 1976)。对于一般的无序版本(其中每个变量都可以由任何参与者选择),我们也证明了问题对于5- cnf是pspace完全的,对于2- cnf是P完全的。此前,已知6-CNFs为PSPACE-complete (Ahlroth和Orponen, MFCS 2012),阳性11-CNFs为PSPACE-complete (Schaefer, STOC 1976)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信