Using structure of data to improve classification

C. O'keefe, G. Jarrad
{"title":"Using structure of data to improve classification","authors":"C. O'keefe, G. Jarrad","doi":"10.1109/IDC.2002.995419","DOIUrl":null,"url":null,"abstract":"Statistical mixture-of-experts models are often used for data analysis tasks such as clustering, regression and classification. We consider two mixture-of-experts models, the shared mixture classifier and the hierarchical mixture-of-experts classifier. We discuss the initialisation and optimisation of the structure and parameters of each classifier. In particular, we initialise the hierarchical mixture of experts classifier with the public domain OC1 decision tree software. We compare the performance of the two classifiers on four datasets, two artificial and two real, finding that the hierarchical mixture-of-experts classifier achieves superior classification performance on the testing data.","PeriodicalId":385351,"journal":{"name":"Final Program and Abstracts on Information, Decision and Control","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Final Program and Abstracts on Information, Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IDC.2002.995419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Statistical mixture-of-experts models are often used for data analysis tasks such as clustering, regression and classification. We consider two mixture-of-experts models, the shared mixture classifier and the hierarchical mixture-of-experts classifier. We discuss the initialisation and optimisation of the structure and parameters of each classifier. In particular, we initialise the hierarchical mixture of experts classifier with the public domain OC1 decision tree software. We compare the performance of the two classifiers on four datasets, two artificial and two real, finding that the hierarchical mixture-of-experts classifier achieves superior classification performance on the testing data.
利用数据结构改进分类
统计混合专家模型通常用于数据分析任务,如聚类、回归和分类。我们考虑了两种专家混合模型,即共享混合分类器和分层混合分类器。我们讨论了每个分类器的结构和参数的初始化和优化。特别地,我们用公共领域OC1决策树软件初始化了层次混合专家分类器。我们比较了两种分类器在四个数据集上的性能,两个人工数据集和两个真实数据集,发现层次混合专家分类器在测试数据上取得了更好的分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信