Automated learning for parameter optimization of robotic assembly tasks utilizing genetic algorithms

J. Marvel, W. Newman, D. Gravel, George Zhang, Jianjun Wang, T. Fuhlbrigge
{"title":"Automated learning for parameter optimization of robotic assembly tasks utilizing genetic algorithms","authors":"J. Marvel, W. Newman, D. Gravel, George Zhang, Jianjun Wang, T. Fuhlbrigge","doi":"10.1109/ROBIO.2009.4913000","DOIUrl":null,"url":null,"abstract":"A challenge for automating mechanical assembly is that cumulative uncertainties typically exceed part clearances, which makes conventional position-based tactics unsuccessful. Force-based assembly strategies offer a potential solution, although such methods are still poorly understood and can be difficult to program. In this paper, we describe a force-based robotic assembly approach that uses fixed strategies with tunable parameters. A generic assembly strategy suitable for execution on an industrial robot is selected by the programmer. Parameters are then self-tuned empirically by the robot using a genetic-algorithm learning process that seeks to minimize assembly time subject to contact-force limits. Results are presented for two automotive part assembly examples using ABB robots with commercial force-control software, showing that the approach is highly effective and suitable for industrial use.","PeriodicalId":321332,"journal":{"name":"2008 IEEE International Conference on Robotics and Biomimetics","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Robotics and Biomimetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO.2009.4913000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

Abstract

A challenge for automating mechanical assembly is that cumulative uncertainties typically exceed part clearances, which makes conventional position-based tactics unsuccessful. Force-based assembly strategies offer a potential solution, although such methods are still poorly understood and can be difficult to program. In this paper, we describe a force-based robotic assembly approach that uses fixed strategies with tunable parameters. A generic assembly strategy suitable for execution on an industrial robot is selected by the programmer. Parameters are then self-tuned empirically by the robot using a genetic-algorithm learning process that seeks to minimize assembly time subject to contact-force limits. Results are presented for two automotive part assembly examples using ABB robots with commercial force-control software, showing that the approach is highly effective and suitable for industrial use.
基于遗传算法的机器人装配任务参数优化自动学习
自动化机械装配的一个挑战是累积的不确定性通常超过零件间隙,这使得传统的基于位置的策略不成功。基于力的装配策略提供了一个潜在的解决方案,尽管这种方法仍然很难理解,并且很难编程。在本文中,我们描述了一种基于力的机器人装配方法,该方法使用具有可调参数的固定策略。由编程人员选择适合在工业机器人上执行的通用装配策略。然后,机器人使用遗传算法学习过程根据经验自调整参数,该过程旨在最大限度地减少受接触力限制的装配时间。采用ABB机器人和商用力控软件进行了两个汽车零件装配实例,结果表明该方法是高效的,适合工业应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信