Pixel-level guided face editing with fully convolution networks

Zhenxi Li, Juyong Zhang
{"title":"Pixel-level guided face editing with fully convolution networks","authors":"Zhenxi Li, Juyong Zhang","doi":"10.1109/ICME.2017.8019363","DOIUrl":null,"url":null,"abstract":"Face editing has a variety of applications, especially with the increasing popularity of photography using mobile devices. In this work, we argue that the performance of face image editing can be further improved by using semantic segmentation which marks each pixel with a label that indicates its corresponding facial part. To this end, we propose a deep learning based method for automatic pixel-level labeling on face images. Our approach achieves state-of-the-art labeling accuracy on publicly available datasets, at a significantly higher speed than existing labeling methods. Then we show how the label information can be applied to various face image editing applications, such as face smoothing, face cloning and face blending. Extensive experimental results demonstrate the effectiveness of our method in editing face images with convincing visual quality.","PeriodicalId":330977,"journal":{"name":"2017 IEEE International Conference on Multimedia and Expo (ICME)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Multimedia and Expo (ICME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2017.8019363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Face editing has a variety of applications, especially with the increasing popularity of photography using mobile devices. In this work, we argue that the performance of face image editing can be further improved by using semantic segmentation which marks each pixel with a label that indicates its corresponding facial part. To this end, we propose a deep learning based method for automatic pixel-level labeling on face images. Our approach achieves state-of-the-art labeling accuracy on publicly available datasets, at a significantly higher speed than existing labeling methods. Then we show how the label information can be applied to various face image editing applications, such as face smoothing, face cloning and face blending. Extensive experimental results demonstrate the effectiveness of our method in editing face images with convincing visual quality.
像素级引导的面部编辑与完全卷积网络
面部编辑有各种各样的应用,特别是随着使用移动设备摄影的日益普及。在这项工作中,我们认为通过使用语义分割可以进一步提高人脸图像编辑的性能,语义分割将每个像素标记为表示其相应面部部分的标签。为此,我们提出了一种基于深度学习的人脸图像像素级自动标注方法。我们的方法在公开可用的数据集上实现了最先进的标记准确性,其速度明显高于现有的标记方法。然后,我们展示了如何将标签信息应用于各种人脸图像编辑应用,如人脸平滑、人脸克隆和人脸混合。大量的实验结果证明了我们的方法在编辑具有令人信服的视觉质量的人脸图像方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信