{"title":"A Neural Network Binary Quantization Method Based on W-Regularization and Variable Cosine Momentum","authors":"Chang Liu, Yingxi Chen","doi":"10.1109/ICCC56324.2022.10065794","DOIUrl":null,"url":null,"abstract":"To solve the problem of insufficient extraction of weight information in binary quantization, this paper proposes a new training module based on W-regularization and variable cosine momentum. W-regularization is achieved by adjusting the network weights so that the weight values are optimised to ±1 and the parameters at different positions are optimised according to different functions. In addition, variable cosine momentum is designed so that parameters farther away from ±1 approach zero at high speed, which can significantly increase the speed of convergence and further improve quantization accuracy. Specifically, it outperforms the highest accuracy of bnn-free by 0.83% and 2.15% on the CIFAR-10, CIFAR-100 datasets, it also improved on both SVHN and TinyImage.","PeriodicalId":263098,"journal":{"name":"2022 IEEE 8th International Conference on Computer and Communications (ICCC)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 8th International Conference on Computer and Communications (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCC56324.2022.10065794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
To solve the problem of insufficient extraction of weight information in binary quantization, this paper proposes a new training module based on W-regularization and variable cosine momentum. W-regularization is achieved by adjusting the network weights so that the weight values are optimised to ±1 and the parameters at different positions are optimised according to different functions. In addition, variable cosine momentum is designed so that parameters farther away from ±1 approach zero at high speed, which can significantly increase the speed of convergence and further improve quantization accuracy. Specifically, it outperforms the highest accuracy of bnn-free by 0.83% and 2.15% on the CIFAR-10, CIFAR-100 datasets, it also improved on both SVHN and TinyImage.