{"title":"Toward an Inductively Powered Wearable Heater using Conductive Thread Coil","authors":"Hyeokjin Kwon, Najam ul Hassan, Byunghun Lee","doi":"10.1109/WoW47795.2020.9291266","DOIUrl":null,"url":null,"abstract":"In this paper, inductive power transmission (IPT) system with wearable heater is proposed to improve convenience for users. The conductive thread which has high electrical resistance is utilized for a receiver (Rx) coil in a clothing to generate high temperature with low current. We introduced series-none (SN) topology to eliminate a resonant capacitor in the wearable heater. The proposed wearable heaters are totally washable thanks to its non-metallic materials other than conductive threads on the clothing. Single resonant capacitor in a transmitter (Tx) is implemented for resonating both Tx and Rx, resulted in the increased power delivered to the load (PDL) while maintaining a high-power transfer efficiency (PTE) comparable with a conventional series-series (SS) topology. When supply voltage of power amplifier, VDD, is 7 V, while the PTE of SS mode and SN mode was 85.2% and 75.8% respectively, the PDL of SS mode and SN mode was 2.74 W and 4.6 W respectively.","PeriodicalId":192132,"journal":{"name":"2020 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WoW47795.2020.9291266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In this paper, inductive power transmission (IPT) system with wearable heater is proposed to improve convenience for users. The conductive thread which has high electrical resistance is utilized for a receiver (Rx) coil in a clothing to generate high temperature with low current. We introduced series-none (SN) topology to eliminate a resonant capacitor in the wearable heater. The proposed wearable heaters are totally washable thanks to its non-metallic materials other than conductive threads on the clothing. Single resonant capacitor in a transmitter (Tx) is implemented for resonating both Tx and Rx, resulted in the increased power delivered to the load (PDL) while maintaining a high-power transfer efficiency (PTE) comparable with a conventional series-series (SS) topology. When supply voltage of power amplifier, VDD, is 7 V, while the PTE of SS mode and SN mode was 85.2% and 75.8% respectively, the PDL of SS mode and SN mode was 2.74 W and 4.6 W respectively.