Analysis of fisher information and the Cramer-Rao bound for nonlinear parameter estimation after compressed sensing

Pooria Pakrooh, L. Scharf, A. Pezeshki, Yuejie Chi
{"title":"Analysis of fisher information and the Cramer-Rao bound for nonlinear parameter estimation after compressed sensing","authors":"Pooria Pakrooh, L. Scharf, A. Pezeshki, Yuejie Chi","doi":"10.1109/ICASSP.2013.6638944","DOIUrl":null,"url":null,"abstract":"In this paper, we analyze the impact of compressed sensing with random matrices on Fisher information and the CRB for estimating unknown parameters in the mean value function of a multivariate normal distribution. We consider the class of random compression matrices that satisfy a version of the Johnson-Lindenstrauss lemma, and we derive analytical lower and upper bounds on the CRB for estimating parameters from randomly compressed data. These bounds quantify the potential loss in CRB as a function of Fisher information of the non-compressed data. In our numerical examples, we consider a direction of arrival estimation problem and compare the actual loss in CRB with our bounds.","PeriodicalId":183968,"journal":{"name":"2013 IEEE International Conference on Acoustics, Speech and Signal Processing","volume":"132 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Acoustics, Speech and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2013.6638944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

Abstract

In this paper, we analyze the impact of compressed sensing with random matrices on Fisher information and the CRB for estimating unknown parameters in the mean value function of a multivariate normal distribution. We consider the class of random compression matrices that satisfy a version of the Johnson-Lindenstrauss lemma, and we derive analytical lower and upper bounds on the CRB for estimating parameters from randomly compressed data. These bounds quantify the potential loss in CRB as a function of Fisher information of the non-compressed data. In our numerical examples, we consider a direction of arrival estimation problem and compare the actual loss in CRB with our bounds.
压缩感知后非线性参数估计的fisher信息和Cramer-Rao界分析
本文分析了随机矩阵压缩感知对Fisher信息的影响,以及多元正态分布均值函数中未知参数估计的CRB。我们考虑了一类满足Johnson-Lindenstrauss引理的随机压缩矩阵,并推导了从随机压缩数据中估计参数的CRB的解析下界和上界。这些界限将CRB中的潜在损失量化为非压缩数据的Fisher信息的函数。在我们的数值例子中,我们考虑了到达方向估计问题,并将CRB中的实际损失与我们的界进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信