Floating Point Architecture Extensions for Optimized Matrix Factorization

A. Pedram, A. Gerstlauer, R. V. D. Geijn
{"title":"Floating Point Architecture Extensions for Optimized Matrix Factorization","authors":"A. Pedram, A. Gerstlauer, R. V. D. Geijn","doi":"10.1109/ARITH.2013.21","DOIUrl":null,"url":null,"abstract":"This paper examines the mapping of algorithms encountered when solving dense linear systems and linear least-squares problems to a custom Linear Algebra Processor. Specifically, the focus is on Cholesky, LU (with partial pivoting), and QR factorizations. As part of the study, we expose the benefits of redesigning floating point units and their surrounding data-paths to support these complicated operations. We show how adding moderate complexity to the architecture greatly alleviates complexities in the algorithm. We study design trade-offs and the effectiveness of architectural modifications to demonstrate that we can improve power and performance efficiency to a level that can otherwise only be expected of full-custom ASIC designs. A feasibility study shows that our extensions to the MAC units can double the speed of required vector-norm operations while reducing energy by 60%. Similarly, up to 20% speedup with 15% savings in energy can be achieved for LU factorization. We show how such efficiency is maintained even in the complex inner kernels of these operations.","PeriodicalId":211528,"journal":{"name":"2013 IEEE 21st Symposium on Computer Arithmetic","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 21st Symposium on Computer Arithmetic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARITH.2013.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

This paper examines the mapping of algorithms encountered when solving dense linear systems and linear least-squares problems to a custom Linear Algebra Processor. Specifically, the focus is on Cholesky, LU (with partial pivoting), and QR factorizations. As part of the study, we expose the benefits of redesigning floating point units and their surrounding data-paths to support these complicated operations. We show how adding moderate complexity to the architecture greatly alleviates complexities in the algorithm. We study design trade-offs and the effectiveness of architectural modifications to demonstrate that we can improve power and performance efficiency to a level that can otherwise only be expected of full-custom ASIC designs. A feasibility study shows that our extensions to the MAC units can double the speed of required vector-norm operations while reducing energy by 60%. Similarly, up to 20% speedup with 15% savings in energy can be achieved for LU factorization. We show how such efficiency is maintained even in the complex inner kernels of these operations.
优化矩阵分解的浮点架构扩展
本文研究了在求解密集线性系统和线性最小二乘问题时遇到的算法映射到自定义线性代数处理器。具体来说,重点是Cholesky, LU(部分枢轴)和QR分解。作为研究的一部分,我们揭示了重新设计浮点单元及其周围数据路径以支持这些复杂操作的好处。我们将展示如何在体系结构中添加适度的复杂性,从而极大地减轻算法的复杂性。我们研究了设计权衡和架构修改的有效性,以证明我们可以将功率和性能效率提高到只有全定制ASIC设计才能达到的水平。可行性研究表明,我们对MAC单元的扩展可以将所需向量范数运算的速度提高一倍,同时减少60%的能量。类似地,对于LU分解,可以实现高达20%的加速和15%的能源节省。我们展示了如何在这些操作的复杂内核中保持这种效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信