Implementation of the Sound Classification Module on the Platform with Limited Resources

Nives Kaprocki, Nenad Pekez, J. Kovacevic
{"title":"Implementation of the Sound Classification Module on the Platform with Limited Resources","authors":"Nives Kaprocki, Nenad Pekez, J. Kovacevic","doi":"10.1109/ZINC.2018.8448512","DOIUrl":null,"url":null,"abstract":"There is a growing trend of using algorithms based on deep and machine learning in consumer devices, which imposes a challenge to the system's development because of the limited amount of resources in an embedded device. This paper presents integration of the sound classification module based on machine learning into a home audio system. The additional module enables dynamic change of processing controls according to the resulting confidence scores which indicate whether the current audio is speech, music or background noise. Main challenge of this paper is overcoming real-time processing constraints and embedded system's resource limitations. Results show that the sound classification module has been successfully integrated and produces the correct output.","PeriodicalId":366195,"journal":{"name":"2018 Zooming Innovation in Consumer Technologies Conference (ZINC)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Zooming Innovation in Consumer Technologies Conference (ZINC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ZINC.2018.8448512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

There is a growing trend of using algorithms based on deep and machine learning in consumer devices, which imposes a challenge to the system's development because of the limited amount of resources in an embedded device. This paper presents integration of the sound classification module based on machine learning into a home audio system. The additional module enables dynamic change of processing controls according to the resulting confidence scores which indicate whether the current audio is speech, music or background noise. Main challenge of this paper is overcoming real-time processing constraints and embedded system's resource limitations. Results show that the sound classification module has been successfully integrated and produces the correct output.
语音分类模块在有限资源平台上的实现
在消费设备中使用基于深度学习和机器学习的算法的趋势越来越大,由于嵌入式设备中的资源有限,这给系统的开发带来了挑战。本文提出了将基于机器学习的声音分类模块集成到家庭音响系统中。额外的模块可以根据得到的置信度分数动态改变处理控制,置信度分数表明当前音频是语音、音乐还是背景噪音。本文的主要挑战是克服实时处理的限制和嵌入式系统的资源限制。结果表明,声音分类模块集成成功,输出正确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信