The Randomness Complexity of Parallel Repetition

Kai-Min Chung, R. Pass
{"title":"The Randomness Complexity of Parallel Repetition","authors":"Kai-Min Chung, R. Pass","doi":"10.1109/FOCS.2011.93","DOIUrl":null,"url":null,"abstract":"Consider a $m$-round interactive protocol with soundness error $1/2$. How much extra randomness is required to decrease the soundness error to $\\delta$ through parallel repetition? Previous work, initiated by Bell are, Goldreich and Gold wasser, shows that for \\emph{public-coin} interactive protocols with \\emph{statistical soundness}, $m \\cdot O(\\log (1/\\delta))$ bits of extra randomness suffices. In this work, we initiate a more general study of the above question. \\begin{itemize}\\item We establish the first derandomized parallel repetition theorem for public-coin interactive protocols with \\emph{computational soundness} (a.k.a. arguments). The parameters of our result essentially matches the earlier works in the information-theoretic setting. \\item We show that obtaining even a sub-linear dependency on the number of rounds $m$ (i.e., $o(m) \\cdot \\log(1/\\delta)$) is impossible in the information-theoretic, and requires the existence of one-way functions in the computational setting. \\item We show that non-trivial derandomized parallel repetition for private-coin protocols is impossible in the information-theoretic setting and requires the existence of one-way functions in the computational setting. \\end{itemize} These results are tight in the sense that parallel repetition theorems in the computational setting can trivially be derandomized using pseudorandom generators, which are implied by the existence of one-way functions.","PeriodicalId":326048,"journal":{"name":"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2011.93","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Consider a $m$-round interactive protocol with soundness error $1/2$. How much extra randomness is required to decrease the soundness error to $\delta$ through parallel repetition? Previous work, initiated by Bell are, Goldreich and Gold wasser, shows that for \emph{public-coin} interactive protocols with \emph{statistical soundness}, $m \cdot O(\log (1/\delta))$ bits of extra randomness suffices. In this work, we initiate a more general study of the above question. \begin{itemize}\item We establish the first derandomized parallel repetition theorem for public-coin interactive protocols with \emph{computational soundness} (a.k.a. arguments). The parameters of our result essentially matches the earlier works in the information-theoretic setting. \item We show that obtaining even a sub-linear dependency on the number of rounds $m$ (i.e., $o(m) \cdot \log(1/\delta)$) is impossible in the information-theoretic, and requires the existence of one-way functions in the computational setting. \item We show that non-trivial derandomized parallel repetition for private-coin protocols is impossible in the information-theoretic setting and requires the existence of one-way functions in the computational setting. \end{itemize} These results are tight in the sense that parallel repetition theorems in the computational setting can trivially be derandomized using pseudorandom generators, which are implied by the existence of one-way functions.
并行重复的随机性复杂性
考虑一个具有可靠性错误$1/2$的$m$ -round交互协议。需要多少额外的随机性才能通过平行重复将稳健性误差降低到$\delta$ ?之前由Bell, Goldreich和Gold wasser发起的工作表明,对于具有\emph{统计合理性}的\emph{公共}货币交互协议,$m \cdot O(\log (1/\delta))$额外的随机性就足够了。在这项工作中,我们对上述问题进行了更广泛的研究。 \begin{itemize}\item 我们建立了具有\emph{计算合理性(即参数)的公共货币交互协议的第一个}非随机并行重复定理。我们的结果的参数基本上与信息论设置中的早期工作相匹配。 \item 我们证明,在信息论中,即使获得与轮数$m$(即$o(m) \cdot \log(1/\delta)$)的次线性依赖关系也是不可能的,并且要求在计算设置中存在单向函数。 \item 我们证明了私有币协议的非平凡非随机并行重复在信息论环境下是不可能的,并且需要在计算环境下存在单向函数。 \end{itemize} 这些结果是紧密的,因为计算设置中的并行重复定理可以使用伪随机生成器轻松地进行非随机化,这是由单向函数的存在所隐含的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信