Enhancing the Transformer Decoder with Transition-based Syntax

Leshem Choshen, Omri Abend
{"title":"Enhancing the Transformer Decoder with Transition-based Syntax","authors":"Leshem Choshen, Omri Abend","doi":"10.18653/v1/2022.conll-1.27","DOIUrl":null,"url":null,"abstract":"Notwithstanding recent advances, syntactic generalization remains a challenge for text decoders. While some studies showed gains from incorporating source-side symbolic syntactic and semantic structure into text generation Transformers, very little work addressed the decoding of such structure. We propose a general approach for tree decoding using a transition-based approach. Examining the challenging test case of incorporating Universal Dependencies syntax into machine translation, we present substantial improvements on test sets that focus on syntactic generalization, while presenting improved or comparable performance on standard MT benchmarks. Further qualitative analysis addresses cases where syntactic generalization in the vanilla Transformer decoder is inadequate and demonstrates the advantages afforded by integrating syntactic information.","PeriodicalId":221345,"journal":{"name":"Proceedings of the 26th Conference on Computational Natural Language Learning (CoNLL)","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th Conference on Computational Natural Language Learning (CoNLL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.conll-1.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Notwithstanding recent advances, syntactic generalization remains a challenge for text decoders. While some studies showed gains from incorporating source-side symbolic syntactic and semantic structure into text generation Transformers, very little work addressed the decoding of such structure. We propose a general approach for tree decoding using a transition-based approach. Examining the challenging test case of incorporating Universal Dependencies syntax into machine translation, we present substantial improvements on test sets that focus on syntactic generalization, while presenting improved or comparable performance on standard MT benchmarks. Further qualitative analysis addresses cases where syntactic generalization in the vanilla Transformer decoder is inadequate and demonstrates the advantages afforded by integrating syntactic information.
用基于转换的语法增强Transformer解码器
尽管最近取得了一些进展,但对于文本解码器来说,语法泛化仍然是一个挑战。虽然一些研究表明,将源端符号语法和语义结构整合到文本生成转换器中会有所收获,但很少有工作涉及对此类结构的解码。我们提出了一种使用基于转换的方法进行树解码的通用方法。研究了将通用依赖语法合并到机器翻译中的具有挑战性的测试用例,我们在专注于语法泛化的测试集上提出了实质性的改进,同时在标准机器翻译基准上提出了改进或可比的性能。进一步的定性分析解决了Transformer解码器中语法泛化不足的情况,并展示了集成语法信息所带来的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信