Preparation, Optical Spectroscopy, and Fluorescence of Molecular Organic Composites for Light-Emitting Diodes

H. W. Sarkas, C. D. Merritt, Z. Kafafi
{"title":"Preparation, Optical Spectroscopy, and Fluorescence of Molecular Organic Composites for Light-Emitting Diodes","authors":"H. W. Sarkas, C. D. Merritt, Z. Kafafi","doi":"10.1364/otfa.1995.md.35","DOIUrl":null,"url":null,"abstract":"Electroluminescence from small organic molecules has been known for some time. Thirty years ago, Helfrich and Schneider reported blue-violet electroluminescence in anthracene with an external quantum efficiency as high as 8%.1 This quantum efficiency is much better than that for the best polymer-based light-emitting diode (LED) reported to date.2 In spite of the superior quantum efficiency of molecular-based electroluminescent devices, no major progress was achieved until fairly recently when Tang and VanSlyke reported the first low-voltage organic LED with an external quantum efficiency of 1% (number of photons per electron).3 The emitting layer in this device consists of a thin layer of the metal complex, tris (8-hydroxyquinolinato) aluminum (AlQ3). Later, Littman and Martie showed an enhancement in the electroluminescence quantum efficiency of AlQ3 by doping it with the highly fluorescent laser dyes, Coumarin 540, Coumarin 343, and DCM.4 The paper focuses on a new class of organic composites consisting of highly fluorescent guest molecules dispersed in AlQ3. The electronic and optical properties of organic nanostructures based on these materials are studied, as functions of the luminescent center concentration, via optical and fluorescence spectroscopies. Photoluminescence quantum yields are measured and used to probe the efficiency of energy transfer between host and guest molecules.","PeriodicalId":246676,"journal":{"name":"Organic Thin Films for Photonic Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Thin Films for Photonic Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/otfa.1995.md.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Electroluminescence from small organic molecules has been known for some time. Thirty years ago, Helfrich and Schneider reported blue-violet electroluminescence in anthracene with an external quantum efficiency as high as 8%.1 This quantum efficiency is much better than that for the best polymer-based light-emitting diode (LED) reported to date.2 In spite of the superior quantum efficiency of molecular-based electroluminescent devices, no major progress was achieved until fairly recently when Tang and VanSlyke reported the first low-voltage organic LED with an external quantum efficiency of 1% (number of photons per electron).3 The emitting layer in this device consists of a thin layer of the metal complex, tris (8-hydroxyquinolinato) aluminum (AlQ3). Later, Littman and Martie showed an enhancement in the electroluminescence quantum efficiency of AlQ3 by doping it with the highly fluorescent laser dyes, Coumarin 540, Coumarin 343, and DCM.4 The paper focuses on a new class of organic composites consisting of highly fluorescent guest molecules dispersed in AlQ3. The electronic and optical properties of organic nanostructures based on these materials are studied, as functions of the luminescent center concentration, via optical and fluorescence spectroscopies. Photoluminescence quantum yields are measured and used to probe the efficiency of energy transfer between host and guest molecules.
发光二极管用有机分子复合材料的制备、光谱学和荧光研究
小有机分子的电致发光已经被发现有一段时间了。三十年前,Helfrich和Schneider报道了蒽的蓝紫色电致发光,其外部量子效率高达8% 1这种量子效率比迄今为止报道的最好的聚合物基发光二极管(LED)要好得多尽管基于分子的电致发光器件具有优越的量子效率,但直到最近Tang和VanSlyke报道了第一个具有1%外部量子效率(每个电子的光子数)的低压有机LED时,才取得了重大进展该装置中的发射层由金属配合物三(8-羟基喹啉)铝(AlQ3)的薄层组成。随后,Littman和Martie通过在AlQ3中掺杂高荧光激光染料香豆素540、香豆素343和dcm,提高了AlQ3的电致发光量子效率。本文重点研究了一类由高荧光客体分子分散在AlQ3中的有机复合材料。通过光学光谱和荧光光谱研究了基于这些材料的有机纳米结构的电子和光学性质,以及发光中心浓度的函数。测量了光致发光量子产率,并用于探测主客体分子之间的能量传递效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信