Multibiometrics Belief Fusion

Dakshina Ranjan Kisku, Jamuna Kanta Sing, Phalguni Gupta
{"title":"Multibiometrics Belief Fusion","authors":"Dakshina Ranjan Kisku, Jamuna Kanta Sing, Phalguni Gupta","doi":"10.1109/ICMV.2009.63","DOIUrl":null,"url":null,"abstract":"This paper proposes a multimodal biometric system through Gaussian Mixture Model (GMM) for face and ear biometrics with belief fusion of the estimated scores characterized by Gabor responses and the proposed fusion is accomplished by Dempster-Shafer (DS) decision theory. Face and ear images are convolved with Gabor wavelet filters to extracts spatially enhanced Gabor facial features and Gabor ear features. Further, GMM is applied to the high-dimensional Gabor face and Gabor ear responses separately for quantitive measurements. Expectation Maximization (EM) algorithm is used to estimate density parameters in GMM. This produces two sets of feature vectors which are then fused using Dempster-Shafer theory. Experiments are conducted on multimodal database containing face and ear images of 400 individuals. It is found that use of Gabor wavelet filters along with GMM and DS theory can provide robust and efficient multimodal fusion strategy.","PeriodicalId":315778,"journal":{"name":"2009 Second International Conference on Machine Vision","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Second International Conference on Machine Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMV.2009.63","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

This paper proposes a multimodal biometric system through Gaussian Mixture Model (GMM) for face and ear biometrics with belief fusion of the estimated scores characterized by Gabor responses and the proposed fusion is accomplished by Dempster-Shafer (DS) decision theory. Face and ear images are convolved with Gabor wavelet filters to extracts spatially enhanced Gabor facial features and Gabor ear features. Further, GMM is applied to the high-dimensional Gabor face and Gabor ear responses separately for quantitive measurements. Expectation Maximization (EM) algorithm is used to estimate density parameters in GMM. This produces two sets of feature vectors which are then fused using Dempster-Shafer theory. Experiments are conducted on multimodal database containing face and ear images of 400 individuals. It is found that use of Gabor wavelet filters along with GMM and DS theory can provide robust and efficient multimodal fusion strategy.
多生物特征信仰融合
本文提出了一种基于高斯混合模型(GMM)的人脸和耳部生物特征识别系统,该系统将Gabor响应特征的估计分数进行信念融合,并采用Dempster-Shafer (DS)决策理论实现融合。人脸和耳朵图像与Gabor小波滤波器进行卷积,提取空间增强的Gabor面部特征和Gabor耳朵特征。此外,将GMM分别应用于高维Gabor面和Gabor耳响应进行定量测量。期望最大化(EM)算法用于估计GMM中的密度参数。这产生了两组特征向量,然后使用Dempster-Shafer理论进行融合。在包含400个个体的人脸和耳朵图像的多模态数据库上进行了实验。研究发现,Gabor小波滤波器结合GMM和DS理论可以提供鲁棒、高效的多模态融合策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信