Real-time classification of dynamic hand gestures from marker-based position data

Andrew Gardner, C. A. Duncan, R. Selmic, Jinko Kanno
{"title":"Real-time classification of dynamic hand gestures from marker-based position data","authors":"Andrew Gardner, C. A. Duncan, R. Selmic, Jinko Kanno","doi":"10.1145/2451176.2451181","DOIUrl":null,"url":null,"abstract":"In this paper we describe plans for a dynamic hand gesture recognition system based on motion capture cameras with unlabeled markers. The intended classifier is an extension of previous work on static hand gesture recognition in the same environment. The static gestures are to form the basis of a vocabulary that will allow precise descriptions of various expressive hand gestures when combined with inferred motion and temporal data. Hidden Markov Models and dynamic time warping are expected to be useful tools in achieving this goal.","PeriodicalId":253850,"journal":{"name":"IUI '13 Companion","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IUI '13 Companion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2451176.2451181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper we describe plans for a dynamic hand gesture recognition system based on motion capture cameras with unlabeled markers. The intended classifier is an extension of previous work on static hand gesture recognition in the same environment. The static gestures are to form the basis of a vocabulary that will allow precise descriptions of various expressive hand gestures when combined with inferred motion and temporal data. Hidden Markov Models and dynamic time warping are expected to be useful tools in achieving this goal.
基于标记的位置数据的动态手势实时分类
在本文中,我们描述了一个基于运动捕捉相机的动态手势识别系统的方案。该分类器是对先前在相同环境下的静态手势识别工作的扩展。静态手势将构成词汇表的基础,当与推断的动作和时间数据相结合时,将允许对各种具有表现力的手势进行精确描述。隐马尔可夫模型和动态时间翘曲有望成为实现这一目标的有用工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信