Comparison of model predictive controller and min-max approach for aircraft engine fuel control

M. Montazeri-Gh, A. Rasti, A. Imani
{"title":"Comparison of model predictive controller and min-max approach for aircraft engine fuel control","authors":"M. Montazeri-Gh, A. Rasti, A. Imani","doi":"10.1109/ICCIAUTOM.2017.8258702","DOIUrl":null,"url":null,"abstract":"Aeroengines use a Min-Max selector structure for fuel flow control. This structure should provide desired fan speed command and prevent the engine from violation of physical and operational limits. Recent studies show that there is no guarantee for Min-Max algorithm with linear compensators to protect engine limits during transient state, while limit violation can make dangerous events. In this study, based on a reliable turbofan engine model, a Min-Max selector controller with linear compensators is designed as the traditional controller for gas turbine engines. Then, model predictive control (MPC) technique which can provide optimal control input with regarding input/output constraints is designed as a modern model-based controller. The performance of the Min-Max selector algorithm and model predictive controller are compared in tracking a general fan speed scenario and limit protection. The simulation results show that the MPC method provides faster response and prevent limit violation in compare with Min-Max approach.","PeriodicalId":197207,"journal":{"name":"2017 5th International Conference on Control, Instrumentation, and Automation (ICCIA)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 5th International Conference on Control, Instrumentation, and Automation (ICCIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIAUTOM.2017.8258702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Aeroengines use a Min-Max selector structure for fuel flow control. This structure should provide desired fan speed command and prevent the engine from violation of physical and operational limits. Recent studies show that there is no guarantee for Min-Max algorithm with linear compensators to protect engine limits during transient state, while limit violation can make dangerous events. In this study, based on a reliable turbofan engine model, a Min-Max selector controller with linear compensators is designed as the traditional controller for gas turbine engines. Then, model predictive control (MPC) technique which can provide optimal control input with regarding input/output constraints is designed as a modern model-based controller. The performance of the Min-Max selector algorithm and model predictive controller are compared in tracking a general fan speed scenario and limit protection. The simulation results show that the MPC method provides faster response and prevent limit violation in compare with Min-Max approach.
模型预测控制器与最小-最大方法在飞机发动机燃油控制中的比较
航空发动机使用最小-最大选择器结构进行燃油流量控制。这种结构应提供所需的风扇速度指令,并防止发动机违反物理和操作限制。近年来的研究表明,带线性补偿器的最小-最大算法不能保证在暂态状态下保护发动机极限,而违反极限会产生危险事件。本文基于可靠的涡扇发动机模型,设计了一种带线性补偿器的最小-最大选择器控制器,作为传统的燃气涡轮发动机控制器。然后,将模型预测控制(MPC)技术设计为一种现代的基于模型的控制器,该技术可以在不考虑输入/输出约束的情况下提供最优控制输入。比较了最小-最大选择器算法和模型预测控制器在一般风扇转速跟踪和极限保护方面的性能。仿真结果表明,与最小-最大方法相比,MPC方法具有更快的响应速度和防止极限违反的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信