{"title":"Dielectric fluid flow generation in meso-tubes with micro-scale electrohydrodynamic conduction pumping","authors":"V. Patel, J. Seyed-Yagoobi","doi":"10.1109/ICDL.2011.6015419","DOIUrl":null,"url":null,"abstract":"Fluid flow generation in micro-scale is becoming increasingly important as two-phase flow thermal management devices at the micro-scale are being widely developed. These devices are currently being used to cool high heat flux sources with small surface areas, found in various electronic, computer and aerospace applications. Limitations in space and power call for a simple yet effective flow generation method that is reliable. In this respect, electrohydrodynamic (EHD) conduction pumping shows great potential as a flow generation technique at the micro-scale. This paper presents the results of an experimental study of EHD conduction pumping of a dielectric liquid in a tube of 1 mm inner diameter, resulting in a maximum mass flux level of 100 kg/m2 s. The pump electrode spacing is on the order of 120 µm. Pressure generation in single phase flow resulting in the above mass flux indicates the effectiveness of the technique. Moreover, this paper demonstrates the practicality of using EHD pumping due to an exceedingly low power requirement and relative ease of implementation.","PeriodicalId":364451,"journal":{"name":"2011 IEEE International Conference on Dielectric Liquids","volume":"489 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Dielectric Liquids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDL.2011.6015419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Fluid flow generation in micro-scale is becoming increasingly important as two-phase flow thermal management devices at the micro-scale are being widely developed. These devices are currently being used to cool high heat flux sources with small surface areas, found in various electronic, computer and aerospace applications. Limitations in space and power call for a simple yet effective flow generation method that is reliable. In this respect, electrohydrodynamic (EHD) conduction pumping shows great potential as a flow generation technique at the micro-scale. This paper presents the results of an experimental study of EHD conduction pumping of a dielectric liquid in a tube of 1 mm inner diameter, resulting in a maximum mass flux level of 100 kg/m2 s. The pump electrode spacing is on the order of 120 µm. Pressure generation in single phase flow resulting in the above mass flux indicates the effectiveness of the technique. Moreover, this paper demonstrates the practicality of using EHD pumping due to an exceedingly low power requirement and relative ease of implementation.