Automatic segmentation of low resolution fetal cardiac data using snakes with shape priors

I. Dindoyal, T. Lambrou, Jing Deng, Andrew Todd-Pokropek
{"title":"Automatic segmentation of low resolution fetal cardiac data using snakes with shape priors","authors":"I. Dindoyal, T. Lambrou, Jing Deng, Andrew Todd-Pokropek","doi":"10.1109/ISPA.2007.4383751","DOIUrl":null,"url":null,"abstract":"This paper presents a level set deformable model to segment all four chambers of the fetal heart simultaneously. We show its results in 2D on 53 images taken from only 8 datasets. Due to our lack of sufficient data we built only a mean template from the training data instead of a full active shape model. Using rigid registration the template was registered to unseen images and the snakes were guided by individual chamber priors as they evolved in unison to segment missing cardiac structures in the presence of high noise. Using a leave one out approach most of the segmentation errors are within 3 pixels of manually traced contours.","PeriodicalId":112420,"journal":{"name":"2007 5th International Symposium on Image and Signal Processing and Analysis","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 5th International Symposium on Image and Signal Processing and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPA.2007.4383751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper presents a level set deformable model to segment all four chambers of the fetal heart simultaneously. We show its results in 2D on 53 images taken from only 8 datasets. Due to our lack of sufficient data we built only a mean template from the training data instead of a full active shape model. Using rigid registration the template was registered to unseen images and the snakes were guided by individual chamber priors as they evolved in unison to segment missing cardiac structures in the presence of high noise. Using a leave one out approach most of the segmentation errors are within 3 pixels of manually traced contours.
具有形状先验的蛇形图像对低分辨率胎儿心脏数据的自动分割
本文提出了一种水平集可变形模型来同时分割胎儿心脏的所有四个腔室。我们以2D的形式展示了从8个数据集中获取的53张图像的结果。由于缺乏足够的数据,我们只从训练数据中构建了一个均值模板,而不是一个完整的活动形状模型。使用刚性配准,模板被配到看不见的图像上,当蛇在高噪声存在下一致进化以分割缺失的心脏结构时,它们被单个腔室先验引导。使用“留一”方法,大多数分割误差都在人工跟踪轮廓的3个像素以内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信