Neural models of microwave transistor noise parameters based on bias conditions and S-parameters

V. Markovic, Z. Marinković
{"title":"Neural models of microwave transistor noise parameters based on bias conditions and S-parameters","authors":"V. Markovic, Z. Marinković","doi":"10.1109/TELSKS.2001.955864","DOIUrl":null,"url":null,"abstract":"This paper presents the results of neural networks application in microwave transistor noise modeling. The neural networks are used to model noise parameters dependence on bias conditions and frequency. In order to improve the modeling, S-parameters are included as inputs of neural models. Once trained, the developed model can be used to predict noise parameters without additional knowledge about noise parameters or any additional computational effort.","PeriodicalId":253344,"journal":{"name":"5th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Service. TELSIKS 2001. Proceedings of Papers (Cat. No.01EX517)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"5th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Service. TELSIKS 2001. Proceedings of Papers (Cat. No.01EX517)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TELSKS.2001.955864","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper presents the results of neural networks application in microwave transistor noise modeling. The neural networks are used to model noise parameters dependence on bias conditions and frequency. In order to improve the modeling, S-parameters are included as inputs of neural models. Once trained, the developed model can be used to predict noise parameters without additional knowledge about noise parameters or any additional computational effort.
基于偏置条件和s参数的微波晶体管噪声参数神经网络模型
本文介绍了神经网络在微波晶体管噪声建模中的应用结果。利用神经网络对噪声参数与偏置条件和频率的关系进行建模。为了改进建模,将s参数作为神经模型的输入。经过训练后,所开发的模型可以用于预测噪声参数,而无需额外的噪声参数知识或任何额外的计算工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信