Area in non-Euclidean geometry

N. A'campo, A. Papadopoulos
{"title":"Area in non-Euclidean geometry","authors":"N. A'campo, A. Papadopoulos","doi":"10.4171/196-1/1","DOIUrl":null,"url":null,"abstract":"We start by recalling the classical theorem of Girard on the area of a spherical triangle in terms of its angle sum, and its analogue in hyperbolic geometry. We then use a formula of Euler for the area of a spherical triangle in terms of side lengths and its analogue in hyperbolic geometry in order to give an equality for the distance between the midpoints of two sides of a spherical (respectively hyperbolic) triangle, in terms of the third side. These equalities give quantitative versions of the positivity (respectively negativity) of the curvature in the sense of Busemann. We present several other results related to area in non-Euclidean geometry.","PeriodicalId":429025,"journal":{"name":"Eighteen Essays in Non-Euclidean Geometry","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eighteen Essays in Non-Euclidean Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/196-1/1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We start by recalling the classical theorem of Girard on the area of a spherical triangle in terms of its angle sum, and its analogue in hyperbolic geometry. We then use a formula of Euler for the area of a spherical triangle in terms of side lengths and its analogue in hyperbolic geometry in order to give an equality for the distance between the midpoints of two sides of a spherical (respectively hyperbolic) triangle, in terms of the third side. These equalities give quantitative versions of the positivity (respectively negativity) of the curvature in the sense of Busemann. We present several other results related to area in non-Euclidean geometry.
非欧几里得几何中的面积
我们首先回顾一下关于球面三角形的角和面积的经典吉拉德定理,以及它在双曲几何中的类比。然后,我们使用欧拉公式计算球面三角形的边长及其在双曲几何中的类比,以便给出球面(分别为双曲)三角形的两条边的中点之间的距离等于第三条边。这些等式给出了在Busemann意义上曲率的正性(分别是负性)的定量版本。在非欧几里德几何中,我们给出了与面积有关的其他几个结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信