GENERALIZED FUNCTIONS AND GAUSSIAN PATH INTEGRALS OVER NON-ARCHIMEDEAN FUNCTION SPACES

A. Khrennikov
{"title":"GENERALIZED FUNCTIONS AND GAUSSIAN PATH INTEGRALS OVER NON-ARCHIMEDEAN FUNCTION SPACES","authors":"A. Khrennikov","doi":"10.1070/IM1992V039N01ABEH002225","DOIUrl":null,"url":null,"abstract":"A mathematical apparatus is developed for non-Archimedean physics: a theory of generalized functions, a theory of integration, and a harmonic analysis. Both finite-dimensional and infinite-dimensional non-Archimedean spaces are considered. Gaussian and Feynman path integrals on non-Archimedean function spaces are introduced. Quantization of a non-Archimedean scalar bosonic field is carried out in the formalism of path integrals. Linear differential equations in spaces of test functions and spaces of generalized functions on infinite-dimensional non-Archimedean spaces are studied (in particular, the heat equation and the Schrodinger equation with a potential).","PeriodicalId":159459,"journal":{"name":"Mathematics of The Ussr-izvestiya","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of The Ussr-izvestiya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1070/IM1992V039N01ABEH002225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

A mathematical apparatus is developed for non-Archimedean physics: a theory of generalized functions, a theory of integration, and a harmonic analysis. Both finite-dimensional and infinite-dimensional non-Archimedean spaces are considered. Gaussian and Feynman path integrals on non-Archimedean function spaces are introduced. Quantization of a non-Archimedean scalar bosonic field is carried out in the formalism of path integrals. Linear differential equations in spaces of test functions and spaces of generalized functions on infinite-dimensional non-Archimedean spaces are studied (in particular, the heat equation and the Schrodinger equation with a potential).
非阿基米德函数空间上的广义函数和高斯路径积分
为非阿基米德物理学开发了一套数学装置:广义函数理论、积分理论和调和分析。考虑了有限维和无限维非阿基米德空间。介绍了非阿基米德函数空间上的高斯和费曼路径积分。用路径积分的形式实现了非阿基米德标量玻色子场的量子化。研究了无限维非阿基米德空间上测试函数空间和广义函数空间中的线性微分方程(特别是热方程和带势的薛定谔方程)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信