American Sign Language Fingerspelling Recognition in the Wild

Bowen Shi, Aurora Martinez Del Rio, J. Keane, Jonathan Michaux, D. Brentari, Gregory Shakhnarovich, Karen Livescu
{"title":"American Sign Language Fingerspelling Recognition in the Wild","authors":"Bowen Shi, Aurora Martinez Del Rio, J. Keane, Jonathan Michaux, D. Brentari, Gregory Shakhnarovich, Karen Livescu","doi":"10.1109/SLT.2018.8639639","DOIUrl":null,"url":null,"abstract":"We address the problem of American Sign Language fingerspelling recognition “in the wild”, using videos collected from websites. We introduce the largest data set available so far for the problem of fingerspelling recognition, and the first using naturally occurring video data. Using this data set, we present the first attempt to recognize fingerspelling sequences in this challenging setting. Unlike prior work, our video data is extremely challenging due to low frame rates and visual variability. To tackle the visual challenges, we train a special-purpose signing hand detector using a small subset of our data. Given the hand detector output, a sequence model decodes the hypothesized fingerspelled letter sequence. For the sequence model, we explore attention-based recurrent encoder-decoders and CTC-based approaches. As the first attempt at fingerspelling recognition in the wild, this work is intended to serve as a baseline for future work on sign language recognition in realistic conditions. We find that, as expected, letter error rates are much higher than in previous work on more controlled data, and we analyze the sources of error and effects of model variants.","PeriodicalId":377307,"journal":{"name":"2018 IEEE Spoken Language Technology Workshop (SLT)","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2018.8639639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

Abstract

We address the problem of American Sign Language fingerspelling recognition “in the wild”, using videos collected from websites. We introduce the largest data set available so far for the problem of fingerspelling recognition, and the first using naturally occurring video data. Using this data set, we present the first attempt to recognize fingerspelling sequences in this challenging setting. Unlike prior work, our video data is extremely challenging due to low frame rates and visual variability. To tackle the visual challenges, we train a special-purpose signing hand detector using a small subset of our data. Given the hand detector output, a sequence model decodes the hypothesized fingerspelled letter sequence. For the sequence model, we explore attention-based recurrent encoder-decoders and CTC-based approaches. As the first attempt at fingerspelling recognition in the wild, this work is intended to serve as a baseline for future work on sign language recognition in realistic conditions. We find that, as expected, letter error rates are much higher than in previous work on more controlled data, and we analyze the sources of error and effects of model variants.
野外美国手语手指拼写识别
我们使用从网站上收集的视频,解决了“在野外”识别美国手语手指拼写的问题。我们介绍了迄今为止可用于指纹识别问题的最大数据集,也是第一个使用自然发生的视频数据的数据集。使用该数据集,我们首次尝试在这种具有挑战性的设置中识别指纹拼写序列。与之前的工作不同,由于低帧率和视觉可变性,我们的视频数据极具挑战性。为了解决视觉上的挑战,我们使用一小部分数据训练了一个特殊用途的手语检测器。给定手检测器输出,序列模型解码假设的手指拼写字母序列。对于序列模型,我们探索了基于注意的循环编码器-解码器和基于ctc的方法。作为野外手势语识别的首次尝试,本工作旨在为未来在现实条件下的手语识别工作奠定基础。我们发现,正如预期的那样,字母错误率比以前在更多受控数据上的工作要高得多,我们分析了错误的来源和模型变量的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信