A Generic Framework for Video Understanding Applied to Group Behavior Recognition

Sofia Zaidenberg, Bernard Boulay, F. Brémond
{"title":"A Generic Framework for Video Understanding Applied to Group Behavior Recognition","authors":"Sofia Zaidenberg, Bernard Boulay, F. Brémond","doi":"10.1109/AVSS.2012.1","DOIUrl":null,"url":null,"abstract":"This paper presents an approach to detect and track groups of people in video-surveillance applications, and to automatically recognize their behavior. This method keeps track of individuals moving together by maintaining a spacial and temporal group coherence. First, people are individually detected and tracked. Second, their trajectories are analyzed over a temporal window and clustered using the Mean-Shift algorithm. A coherence value describes how well a set of people can be described as a group. Furthermore, we propose a formal event description language. The group events recognition approach is successfully validated on 4 camera views from 3 datasets: an airport, a subway, a shopping center corridor and an entrance hall.","PeriodicalId":275325,"journal":{"name":"2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2012.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

This paper presents an approach to detect and track groups of people in video-surveillance applications, and to automatically recognize their behavior. This method keeps track of individuals moving together by maintaining a spacial and temporal group coherence. First, people are individually detected and tracked. Second, their trajectories are analyzed over a temporal window and clustered using the Mean-Shift algorithm. A coherence value describes how well a set of people can be described as a group. Furthermore, we propose a formal event description language. The group events recognition approach is successfully validated on 4 camera views from 3 datasets: an airport, a subway, a shopping center corridor and an entrance hall.
应用于群体行为识别的视频理解通用框架
本文提出了一种在视频监控应用中检测和跟踪人群,并对其行为进行自动识别的方法。这种方法通过保持空间和时间的群体一致性来跟踪个体的移动。首先,每个人都被单独检测和跟踪。其次,在一个时间窗口内分析它们的轨迹,并使用Mean-Shift算法聚类。一致性值描述了将一组人描述为一个群体的程度。此外,我们提出了一种形式化的事件描述语言。群体事件识别方法在机场、地铁、购物中心走廊和入口大厅3个数据集的4个摄像头视图上成功验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信