{"title":"Quantized Chaotic Systems","authors":"R. Graham","doi":"10.1364/idlnos.1985.thc1","DOIUrl":null,"url":null,"abstract":"Chaos is a typical form of dynamical behavior of classical nonlinear dynamical systems. In conservative Hamiltonian systems with f degrees of freedom chaos appears if the system is not intergrable and in some regions of phase space trajectories are not restricted to f-dimensional smooth manifolds. In dissipative systems chaos in the dynamical steady state appears if the system has a strange attractor in configuration space.","PeriodicalId":262701,"journal":{"name":"International Meeting on Instabilities and Dynamics of Lasers and Nonlinear Optical Systems","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Meeting on Instabilities and Dynamics of Lasers and Nonlinear Optical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/idlnos.1985.thc1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Chaos is a typical form of dynamical behavior of classical nonlinear dynamical systems. In conservative Hamiltonian systems with f degrees of freedom chaos appears if the system is not intergrable and in some regions of phase space trajectories are not restricted to f-dimensional smooth manifolds. In dissipative systems chaos in the dynamical steady state appears if the system has a strange attractor in configuration space.