An empirical study of latency in an emerging class of edge computing applications for wearable cognitive assistance

Zhuo Chen, Wenlu Hu, Junjue Wang, Siyan Zhao, Brandon Amos, Guanhang Wu, Kiryong Ha, Khalid Elgazzar, P. Pillai, R. Klatzky, D. Siewiorek, M. Satyanarayanan
{"title":"An empirical study of latency in an emerging class of edge computing applications for wearable cognitive assistance","authors":"Zhuo Chen, Wenlu Hu, Junjue Wang, Siyan Zhao, Brandon Amos, Guanhang Wu, Kiryong Ha, Khalid Elgazzar, P. Pillai, R. Klatzky, D. Siewiorek, M. Satyanarayanan","doi":"10.1145/3132211.3134458","DOIUrl":null,"url":null,"abstract":"An emerging class of interactive wearable cognitive assistance applications is poised to become one of the key demonstrators of edge computing infrastructure. In this paper, we design seven such applications and evaluate their performance in terms of latency across a range of edge computing configurations, mobile hardware, and wireless networks, including 4G LTE. We also devise a novel multi-algorithm approach that leverages temporal locality to reduce end-to-end latency by 60% to 70%, without sacrificing accuracy. Finally, we derive target latencies for our applications, and show that edge computing is crucial to meeting these targets.","PeriodicalId":389022,"journal":{"name":"Proceedings of the Second ACM/IEEE Symposium on Edge Computing","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"192","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Second ACM/IEEE Symposium on Edge Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3132211.3134458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 192

Abstract

An emerging class of interactive wearable cognitive assistance applications is poised to become one of the key demonstrators of edge computing infrastructure. In this paper, we design seven such applications and evaluate their performance in terms of latency across a range of edge computing configurations, mobile hardware, and wireless networks, including 4G LTE. We also devise a novel multi-algorithm approach that leverages temporal locality to reduce end-to-end latency by 60% to 70%, without sacrificing accuracy. Finally, we derive target latencies for our applications, and show that edge computing is crucial to meeting these targets.
一项针对可穿戴认知辅助的新兴边缘计算应用程序延迟的实证研究
一种新兴的交互式可穿戴认知辅助应用有望成为边缘计算基础设施的关键示范之一。在本文中,我们设计了7个这样的应用程序,并在一系列边缘计算配置、移动硬件和无线网络(包括4G LTE)的延迟方面评估了它们的性能。我们还设计了一种新的多算法方法,利用时间局域性将端到端延迟减少60%到70%,而不牺牲准确性。最后,我们推导了应用程序的目标延迟,并表明边缘计算对于满足这些目标至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信