Compound-Cognizant Feature Compression of Gas Chromatographic Data to Facilitate Environmental Forensics

H. G. Damavandi, A. Gupta, C. Reddy, Robert Nelson
{"title":"Compound-Cognizant Feature Compression of Gas Chromatographic Data to Facilitate Environmental Forensics","authors":"H. G. Damavandi, A. Gupta, C. Reddy, Robert Nelson","doi":"10.1109/DCC.2015.73","DOIUrl":null,"url":null,"abstract":"We present complementary compound-cognizant data engineering techniques for feature compression and data indexing across two-dimensional gas chromatographic (GC×GC) datasets with petroleum forensics as the primary application. We propose single-linkage clustering of dominant compounds (targets) along with local interpretation across biomarker peak profiles. Our methods enable high-volume data compression, along with robust querying and forensic distinction between similar sources. We validate our techniques against a diverse dataset of thirty-four crude oil injections collected from nineteen distinct sources across the planet, with emphasis on Macon do well, the source of Deepwater Horizon disaster (Gulf of Mexico, April 2010).","PeriodicalId":313156,"journal":{"name":"2015 Data Compression Conference","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2015.73","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We present complementary compound-cognizant data engineering techniques for feature compression and data indexing across two-dimensional gas chromatographic (GC×GC) datasets with petroleum forensics as the primary application. We propose single-linkage clustering of dominant compounds (targets) along with local interpretation across biomarker peak profiles. Our methods enable high-volume data compression, along with robust querying and forensic distinction between similar sources. We validate our techniques against a diverse dataset of thirty-four crude oil injections collected from nineteen distinct sources across the planet, with emphasis on Macon do well, the source of Deepwater Horizon disaster (Gulf of Mexico, April 2010).
气相色谱数据的化合物识别特征压缩以促进环境取证
我们提出了互补的化合物认知数据工程技术,用于跨二维气相色谱(GC×GC)数据集的特征压缩和数据索引,以石油取证为主要应用。我们提出了优势化合物(目标)的单链接聚类以及跨生物标志物峰谱的局部解释。我们的方法支持大容量数据压缩,以及健壮的查询和相似源之间的取证区分。我们通过不同的数据集验证了我们的技术,这些数据集收集了来自全球19个不同来源的34种原油注入,重点是深水地平线灾难的源头Macon。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信