Solving the Sigma-Tau Problem

J. Sawada, A. Williams
{"title":"Solving the Sigma-Tau Problem","authors":"J. Sawada, A. Williams","doi":"10.1145/3359589","DOIUrl":null,"url":null,"abstract":"Knuth assigned the following open problem a difficulty rating of 48/50 in The Art of Computer Programming Volume 4A: For odd n ≥ 3, can the permutations of { 1,2,… , n} be ordered in a cyclic list so that each permutation is transformed into the next by applying either the operation σ, a rotation to the left, or τ, a transposition of the first two symbols? The Sigma-Tau problem is equivalent to finding a Hamilton cycle in the directed Cayley graph generated by σ = (1 2 ⋅ n) and τ = (1 2). In this article, we solve the Sigma-Tau problem by providing a simple O(n)-time successor rule to generate successive permutations of a Hamilton cycle in the aforementioned Cayley graph.","PeriodicalId":154047,"journal":{"name":"ACM Transactions on Algorithms (TALG)","volume":"273 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Algorithms (TALG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3359589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Knuth assigned the following open problem a difficulty rating of 48/50 in The Art of Computer Programming Volume 4A: For odd n ≥ 3, can the permutations of { 1,2,… , n} be ordered in a cyclic list so that each permutation is transformed into the next by applying either the operation σ, a rotation to the left, or τ, a transposition of the first two symbols? The Sigma-Tau problem is equivalent to finding a Hamilton cycle in the directed Cayley graph generated by σ = (1 2 ⋅ n) and τ = (1 2). In this article, we solve the Sigma-Tau problem by providing a simple O(n)-time successor rule to generate successive permutations of a Hamilton cycle in the aforementioned Cayley graph.
解决西格玛问题
Knuth在《计算机程序设计的艺术》第4A卷中分配了一个难度等级为48/50的开放问题:对于奇数n≥3,{1,2,…,n}的排列是否可以在循环列表中排序,以便通过向左旋转σ操作或前两个符号的转置τ操作将每个排列转换为下一个排列?Sigma-Tau问题相当于在由σ =(1 2⋅n)和τ =(1 2)生成的有向Cayley图中寻找Hamilton环。在本文中,我们通过提供一个简单的O(n)时间后后性规则来解决Sigma-Tau问题,以生成上述Cayley图中Hamilton环的连续排列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信