Building a Chatbot on a Closed Domain using RASA

Khang Nhut Lam, Nam Nhat Le, J. Kalita
{"title":"Building a Chatbot on a Closed Domain using RASA","authors":"Khang Nhut Lam, Nam Nhat Le, J. Kalita","doi":"10.1145/3443279.3443308","DOIUrl":null,"url":null,"abstract":"In this study, we build a chatbot system in a closed domain with the RASA framework, using several models such as SVM for classifying intents, CRF for extracting entities and LSTM for predicting action. To improve responses from the bot, the kNN algorithm is used to transform false entities extracted into true entities. The knowledge domain of our chatbot is about the College of Information and Communication Technology of Can Tho University, Vietnam. We manually construct a chatbot corpus with 19 intents, 441 sentence patterns of intents, 253 entities and 133 stories. Experiment results show that the bot responds well to relevant questions.","PeriodicalId":414366,"journal":{"name":"Proceedings of the 4th International Conference on Natural Language Processing and Information Retrieval","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th International Conference on Natural Language Processing and Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3443279.3443308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In this study, we build a chatbot system in a closed domain with the RASA framework, using several models such as SVM for classifying intents, CRF for extracting entities and LSTM for predicting action. To improve responses from the bot, the kNN algorithm is used to transform false entities extracted into true entities. The knowledge domain of our chatbot is about the College of Information and Communication Technology of Can Tho University, Vietnam. We manually construct a chatbot corpus with 19 intents, 441 sentence patterns of intents, 253 entities and 133 stories. Experiment results show that the bot responds well to relevant questions.
使用RASA在封闭域上构建聊天机器人
在本研究中,我们在RASA框架下构建了一个封闭域的聊天机器人系统,使用了几种模型,如用于分类意图的SVM,用于提取实体的CRF和用于预测动作的LSTM。为了提高机器人的响应,使用kNN算法将提取的虚假实体转换为真实实体。我们的聊天机器人的知识领域是关于越南芹苴大学信息与通信技术学院的。我们人工构建了一个包含19个意图、441个意图句型、253个实体和133个故事的聊天机器人语料库。实验结果表明,该机器人能够很好地回答相关问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信