Zero-Touch MEC Resources for Connected Autonomous Vehicles Managed by Federated Learning

Carlos Ruiz De Mendoza, C. Cervelló-Pastor
{"title":"Zero-Touch MEC Resources for Connected Autonomous Vehicles Managed by Federated Learning","authors":"Carlos Ruiz De Mendoza, C. Cervelló-Pastor","doi":"10.1109/NetSoft57336.2023.10175494","DOIUrl":null,"url":null,"abstract":"This paper presents a Ph.D. thesis proposal for a novel solution in optimizing the placement of Connected Autonomous Vehicles (CAVs) Virtual Network Functions (VNFs) requests in Edge Computing (EC) resources. Our Federated Deep Reinforcement Learning (FDRL) proposal will be designed to improve computation efficiency while minimizing service rejections and maximizing resource utilization, and ensuring the least costly path for CAVs. This approach will also be privacy-preserving, ensuring sensitive data remains secure and enables reliable, low-latency communication between CAVs, EC nodes, and the federated server. By utilizing distributed learning capabilities, FDRL allows multiple vehicles to learn from their local experience and make collective decisions, improving network systems performance.","PeriodicalId":223208,"journal":{"name":"2023 IEEE 9th International Conference on Network Softwarization (NetSoft)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 9th International Conference on Network Softwarization (NetSoft)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NetSoft57336.2023.10175494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a Ph.D. thesis proposal for a novel solution in optimizing the placement of Connected Autonomous Vehicles (CAVs) Virtual Network Functions (VNFs) requests in Edge Computing (EC) resources. Our Federated Deep Reinforcement Learning (FDRL) proposal will be designed to improve computation efficiency while minimizing service rejections and maximizing resource utilization, and ensuring the least costly path for CAVs. This approach will also be privacy-preserving, ensuring sensitive data remains secure and enables reliable, low-latency communication between CAVs, EC nodes, and the federated server. By utilizing distributed learning capabilities, FDRL allows multiple vehicles to learn from their local experience and make collective decisions, improving network systems performance.
基于联邦学习管理的互联自动驾驶汽车零接触MEC资源
本文提出了一项博士论文提案,该提案旨在优化连接自动驾驶汽车(cav)虚拟网络功能(VNFs)请求在边缘计算(EC)资源中的放置。我们的联邦深度强化学习(FDRL)提案旨在提高计算效率,同时最大限度地减少服务拒绝和最大化资源利用率,并确保自动驾驶汽车的成本最低的路径。这种方法还将保护隐私,确保敏感数据保持安全,并支持cav、EC节点和联邦服务器之间可靠、低延迟的通信。通过利用分布式学习能力,FDRL允许多辆车从本地经验中学习并做出集体决策,从而提高网络系统的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信