Laguerre Polynomials and Gradient Descent Approach for Linear Quadratic Optimal Control

Halah Jaber, M. Frye
{"title":"Laguerre Polynomials and Gradient Descent Approach for Linear Quadratic Optimal Control","authors":"Halah Jaber, M. Frye","doi":"10.1109/ICEEE49618.2020.9102610","DOIUrl":null,"url":null,"abstract":"This paper presents a computational approach for solving linear time invariant quadratic optimal control system problem. The proposed approach is classified as a direct method, which is utilized by applying state and control parametrization using a finite length of Laguerre polynomials as a basis function with unknown parameters. In addition, the stochastic gradient descent approach was used to estimate the optimal parameters. Furthermore, this paper provides numerical examples to demonstrate the proficiency of the proposed method. The results of this study showed that using the direct method along with the stochastic gradient descent techniques were effective in solving the linear time invariant quadratic optimal control system problem.","PeriodicalId":131382,"journal":{"name":"2020 7th International Conference on Electrical and Electronics Engineering (ICEEE)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 7th International Conference on Electrical and Electronics Engineering (ICEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEE49618.2020.9102610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a computational approach for solving linear time invariant quadratic optimal control system problem. The proposed approach is classified as a direct method, which is utilized by applying state and control parametrization using a finite length of Laguerre polynomials as a basis function with unknown parameters. In addition, the stochastic gradient descent approach was used to estimate the optimal parameters. Furthermore, this paper provides numerical examples to demonstrate the proficiency of the proposed method. The results of this study showed that using the direct method along with the stochastic gradient descent techniques were effective in solving the linear time invariant quadratic optimal control system problem.
线性二次最优控制的拉盖尔多项式和梯度下降法
本文提出了求解线性时不变二次型最优控制系统问题的一种计算方法。该方法是一种直接方法,利用有限长度的拉盖尔多项式作为未知参数的基函数,进行状态和控制参数化。此外,采用随机梯度下降法估计最优参数。最后,通过数值算例验证了该方法的有效性。研究结果表明,直接法结合随机梯度下降法是求解线性时不变二次型最优控制系统问题的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信