Probabilistic Word Embeddings in Neural IR: A Promising Model That Does Not Work as Expected (For Now)

Alberto Purpura, Marco Maggipinto, G. Silvello, Gian Antonio Susto
{"title":"Probabilistic Word Embeddings in Neural IR: A Promising Model That Does Not Work as Expected (For Now)","authors":"Alberto Purpura, Marco Maggipinto, G. Silvello, Gian Antonio Susto","doi":"10.1145/3341981.3344217","DOIUrl":null,"url":null,"abstract":"In this paper, we discuss how a promising word vector representation based on Probabilistic Word Embeddings (PWE) can be applied to Neural Information Retrieval (NeuIR). We illustrate PWE pros for text retrieval, and identify the core issues which prevent a full exploitation of their potential. In particular, we focus on the application of elliptical probabilistic embeddings, a type of PWE, to a NeuIR system (i.e., MatchPyramid). The main contributions of this paper are: (i) an analysis of the pros and cons of PWE in NeuIR; (ii) an in-depth comparison of PWE against pre-trained Word2Vec, FastText and WordNet word embeddings; (iii) an extension of the MatchPyramid model to take advantage of broader word relations information from WordNet; (iv) a topic-level evaluation of the MatchPyramid ranking models employing the considered word embeddings. Finally, we discuss some lessons learned and outline some open research problems to employ PWE in NeuIR systems more effectively.","PeriodicalId":173154,"journal":{"name":"Proceedings of the 2019 ACM SIGIR International Conference on Theory of Information Retrieval","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 ACM SIGIR International Conference on Theory of Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3341981.3344217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we discuss how a promising word vector representation based on Probabilistic Word Embeddings (PWE) can be applied to Neural Information Retrieval (NeuIR). We illustrate PWE pros for text retrieval, and identify the core issues which prevent a full exploitation of their potential. In particular, we focus on the application of elliptical probabilistic embeddings, a type of PWE, to a NeuIR system (i.e., MatchPyramid). The main contributions of this paper are: (i) an analysis of the pros and cons of PWE in NeuIR; (ii) an in-depth comparison of PWE against pre-trained Word2Vec, FastText and WordNet word embeddings; (iii) an extension of the MatchPyramid model to take advantage of broader word relations information from WordNet; (iv) a topic-level evaluation of the MatchPyramid ranking models employing the considered word embeddings. Finally, we discuss some lessons learned and outline some open research problems to employ PWE in NeuIR systems more effectively.
神经IR中的概率词嵌入:一个有前途的模型,但目前并不像预期的那样工作
本文讨论了基于概率词嵌入(PWE)的词向量表示在神经信息检索(NeuIR)中的应用。我们说明了文本检索的PWE优点,并确定了阻止充分利用其潜力的核心问题。我们特别关注椭圆概率嵌入(一种PWE)在NeuIR系统(即MatchPyramid)中的应用。本文的主要贡献有:(1)分析了PWE在NeuIR中的利弊;(ii)将PWE与预先训练的Word2Vec、FastText和WordNet词嵌入进行深入比较;(iii)对MatchPyramid模型进行扩展,以利用来自WordNet的更广泛的词关系信息;(iv)使用所考虑的词嵌入对MatchPyramid排名模型进行主题级评估。最后,我们讨论了一些经验教训,并概述了一些开放的研究问题,以便更有效地将PWE应用于NeuIR系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信