S. Lee, Seok-Heon Jung, Jin‐Kyun Lee, Cheawon Kim, Mi Jung Lee
{"title":"Investigation of charge injection characteristics in diketopyrrolopyrrole ambipolar semiconducting polymers","authors":"S. Lee, Seok-Heon Jung, Jin‐Kyun Lee, Cheawon Kim, Mi Jung Lee","doi":"10.1117/12.2061658","DOIUrl":null,"url":null,"abstract":"A semiconducting polymers with conjugated diketopyrrolopyrrole (DPP) unit was developed for high performance ambipolar organic field-effect transistors (OFETs). We report electrical characteristics of DPP OFETs in various ways which measured transistor and inverter performance with various bias conditions and self-assembled monolayers (SAMs) treatment. Ambipolar DPP conjugated polymer OFETs showed high hole and electron mobility of μh=0.57 cm2V-1s-1 and μe=0.51 cm2V-1s-1 with O2 plasma treatment and 1-decanethiol SAMs treatment, respectively with annealing at 100°C. Contact resistance effect on mobilities was investigated by measuring contact resistance during device operation through gated four-point probe (gFPP) and simultaneous contact resistance extraction model directly from current voltage characteristics.","PeriodicalId":358951,"journal":{"name":"Optics & Photonics - Photonic Devices + Applications","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics & Photonics - Photonic Devices + Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2061658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
A semiconducting polymers with conjugated diketopyrrolopyrrole (DPP) unit was developed for high performance ambipolar organic field-effect transistors (OFETs). We report electrical characteristics of DPP OFETs in various ways which measured transistor and inverter performance with various bias conditions and self-assembled monolayers (SAMs) treatment. Ambipolar DPP conjugated polymer OFETs showed high hole and electron mobility of μh=0.57 cm2V-1s-1 and μe=0.51 cm2V-1s-1 with O2 plasma treatment and 1-decanethiol SAMs treatment, respectively with annealing at 100°C. Contact resistance effect on mobilities was investigated by measuring contact resistance during device operation through gated four-point probe (gFPP) and simultaneous contact resistance extraction model directly from current voltage characteristics.