Modified Comprehensive Learning Particle Swarm Optimization for Numerical and Takagi-Sugeno Fuzzy System Modeling

Guohan Lin, Kuiyin Zhao
{"title":"Modified Comprehensive Learning Particle Swarm Optimization for Numerical and Takagi-Sugeno Fuzzy System Modeling","authors":"Guohan Lin, Kuiyin Zhao","doi":"10.14257/IJHIT.2017.10.1.09","DOIUrl":null,"url":null,"abstract":"Modifications for comprehensive learning particle swarm optimization (M-CLPSO) is proposed for numerical problems and modeling Takagi-Sugeno(T-S) Fuzzy System. A self-adaptive strategy is adopted to adjust the value of acceleration coefficient dynamically. In the late stage of the evolution, Gaussian disturbance is hydride with algorithm to help the stagnant particles to escape from standstill state. The effectiveness of the proposed algorithm is verified by numerical experiments and T-S fuzzy system modeling. The experiments results show that the proposed method can provide comparable improvement in solving function optimization problems and can generate good fuzzy system model with high accuracy.","PeriodicalId":170772,"journal":{"name":"International Journal of Hybrid Information Technology","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hybrid Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14257/IJHIT.2017.10.1.09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Modifications for comprehensive learning particle swarm optimization (M-CLPSO) is proposed for numerical problems and modeling Takagi-Sugeno(T-S) Fuzzy System. A self-adaptive strategy is adopted to adjust the value of acceleration coefficient dynamically. In the late stage of the evolution, Gaussian disturbance is hydride with algorithm to help the stagnant particles to escape from standstill state. The effectiveness of the proposed algorithm is verified by numerical experiments and T-S fuzzy system modeling. The experiments results show that the proposed method can provide comparable improvement in solving function optimization problems and can generate good fuzzy system model with high accuracy.
基于改进综合学习粒子群算法的数值模糊系统建模与Takagi-Sugeno
针对Takagi-Sugeno(T-S)模糊系统的数值问题和建模问题,提出了综合学习粒子群优化算法(M-CLPSO)的改进。采用自适应策略动态调整加速度系数的取值。在演化的后期,高斯扰动被加氢,算法帮助停滞粒子脱离静止状态。通过数值实验和T-S模糊系统建模验证了该算法的有效性。实验结果表明,该方法在求解函数优化问题方面有较大的改进,并能生成精度较高的模糊系统模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信