Deep Learning Approach for LOS and NLOS Identification in the Indoor Environment

Alicja Olejniczak, Olga Blaszkiewicz, K. Cwalina, Piotr Rajchowski, J. Sadowski
{"title":"Deep Learning Approach for LOS and NLOS Identification in the Indoor Environment","authors":"Alicja Olejniczak, Olga Blaszkiewicz, K. Cwalina, Piotr Rajchowski, J. Sadowski","doi":"10.23919/URSI48707.2020.9253757","DOIUrl":null,"url":null,"abstract":"Due to confined spaces and various obstacles e.g. walls, furniture, indoor environment may be considered as a harsh and disturbing in terms of the indoor radiocommunication services operation. The given paper presents FNN (Feedforward Neural Network) method for LOS (Line-Of-Sight) and NLOS (Non-Line-Of-Sight) identification which may support mitigation of such a negative influence. Described FNN architecture was evaluated based on a real indoor measurements collected with the use of the UWB (Ultra Wideband) radio modules.","PeriodicalId":185201,"journal":{"name":"2020 Baltic URSI Symposium (URSI)","volume":"273 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Baltic URSI Symposium (URSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/URSI48707.2020.9253757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Due to confined spaces and various obstacles e.g. walls, furniture, indoor environment may be considered as a harsh and disturbing in terms of the indoor radiocommunication services operation. The given paper presents FNN (Feedforward Neural Network) method for LOS (Line-Of-Sight) and NLOS (Non-Line-Of-Sight) identification which may support mitigation of such a negative influence. Described FNN architecture was evaluated based on a real indoor measurements collected with the use of the UWB (Ultra Wideband) radio modules.
室内环境下LOS和NLOS识别的深度学习方法
由于空间有限及墙壁、家具等障碍,室内环境可能对室内无线电通讯服务的操作造成恶劣和干扰。本文提出了FNN(前馈神经网络)方法用于LOS(视距)和NLOS(非视距)识别,这可能有助于减轻这种负面影响。根据使用UWB(超宽带)无线电模块收集的真实室内测量数据,对所描述的FNN架构进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信