{"title":"GPU-based parallel householder bidiagonalization","authors":"Fangbing Liu, F. Seinstra","doi":"10.1145/1851476.1851512","DOIUrl":null,"url":null,"abstract":"In this paper, we discuss the GPU-based implementation and optimization of Householder bidiagonalization, a matrix factorization method which is an integral part of full Singular Value Decomposition (SVD) - an important algorithm for many problems in the research domain of Multimedia Content Analysis (MMCA). On cluster computers, complex adaptive run-time techniques often must be implemented to overcome the growing negative performance impact of load imbalances and to ensure reasonable speedup. We show that the nature of the many-core platform can avoid the necessity of applying such complex run-time parallelization techniques in software while achieving a performance of 64 gigaflops/s on a single-GPU GTX 295 in double precision, 82% of the theoretical peak performance.","PeriodicalId":330072,"journal":{"name":"IEEE International Symposium on High-Performance Parallel Distributed Computing","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Symposium on High-Performance Parallel Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1851476.1851512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
In this paper, we discuss the GPU-based implementation and optimization of Householder bidiagonalization, a matrix factorization method which is an integral part of full Singular Value Decomposition (SVD) - an important algorithm for many problems in the research domain of Multimedia Content Analysis (MMCA). On cluster computers, complex adaptive run-time techniques often must be implemented to overcome the growing negative performance impact of load imbalances and to ensure reasonable speedup. We show that the nature of the many-core platform can avoid the necessity of applying such complex run-time parallelization techniques in software while achieving a performance of 64 gigaflops/s on a single-GPU GTX 295 in double precision, 82% of the theoretical peak performance.