Grouping Computational Data in Resource Caches of Edge-Fog Cloud

Nitinder Mohan, Pengyuan Zhou, Keerthana Govindaraj, J. Kangasharju
{"title":"Grouping Computational Data in Resource Caches of Edge-Fog Cloud","authors":"Nitinder Mohan, Pengyuan Zhou, Keerthana Govindaraj, J. Kangasharju","doi":"10.1145/3069383.3069391","DOIUrl":null,"url":null,"abstract":"Edge-Fog clouds provide an attractive platform for bringing data processing closer to its source in a networked environment. In this paper we extend our work on Edge-Fog clouds and to an industrial automation scenario, where we show how grouping of computational data in resource caches lowers network traffic and shortens application-experienced latency. Our preliminary results are promising and in our future work we plan to evaluate more realistic scenarios and apply the solutions in real industrial automation cases.","PeriodicalId":445825,"journal":{"name":"Proceedings of the 4th Workshop on CrossCloud Infrastructures & Platforms","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th Workshop on CrossCloud Infrastructures & Platforms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3069383.3069391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Edge-Fog clouds provide an attractive platform for bringing data processing closer to its source in a networked environment. In this paper we extend our work on Edge-Fog clouds and to an industrial automation scenario, where we show how grouping of computational data in resource caches lowers network traffic and shortens application-experienced latency. Our preliminary results are promising and in our future work we plan to evaluate more realistic scenarios and apply the solutions in real industrial automation cases.
边缘雾云资源缓存中计算数据分组
边缘雾云提供了一个有吸引力的平台,可以在网络环境中使数据处理更接近其来源。在本文中,我们将我们的工作扩展到边缘雾云和工业自动化场景,其中我们展示了如何将计算数据分组在资源缓存中降低网络流量并缩短应用程序体验的延迟。我们的初步结果是有希望的,在我们未来的工作中,我们计划评估更现实的场景,并将解决方案应用于实际的工业自动化案例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信