Data Mining Menggunakan Metode K-Means Clustering Untuk Menentukan Besaran Uang Kuliah Tunggal

Haris Kurniawan, Sarjon Defit, Sumijan
{"title":"Data Mining Menggunakan Metode K-Means Clustering Untuk Menentukan Besaran Uang Kuliah Tunggal","authors":"Haris Kurniawan, Sarjon Defit, Sumijan","doi":"10.52158/JACOST.V1I2.102","DOIUrl":null,"url":null,"abstract":"Digitalisasi dan otomasi dalam pelayanan mahasiswa di Perguruan Tinggi dapat menghasilkan big data. Amanat pemerintah dalam Peraturan Mentri Riset Teknologi dan Pendidikan Tinggi agar besaran Uang Kuliah Tunggal (UKT) di Perguruan Tinggi Negeri dibagi ke dalam 5 kelompok berdasarkan tingkatan kondisi sosial ekonomi orang tua. Dalam proses menetapkan UKT begitu banyak indikator sosial ekonomi orang tua yang harus dijadikan acuan sehingga menyulitkan dalam mengidentifiksi dan mencari formula yang tepat. Untuk mengelompokkan data mahasiswa ini dilakukan dengan teknik data mining menggunakan metode K-Means Clustering. Metode ini mengelompokkan besaran UKT mahasiswa berdasarkan pola atau kemiripan data sosial ekonomi orang tua. Data yang digunakan dalam penelitian ini adalah data calon mahasiswa baru Unversitas Negeri Padang. Pengelompokan ini bertujuan untuk membantu menetapkan besaran UKT calon mahasiswa baru pada Perguruan Tinggi Negeri. Hasil dari penelitian diperoleh 5 kelompok besaran UKT, terdiri dari UKT kategori 1 Rp. 500.000, UKT kategori 2 Rp. 1.000.000, UKT kategori 3 Rp. 2.000.000, UKT kategori 4 Rp. 3.000.000 dan UKT kategori 5 Rp. 4.000.000. \n ","PeriodicalId":151855,"journal":{"name":"Journal of Applied Computer Science and Technology","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Computer Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52158/JACOST.V1I2.102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Digitalisasi dan otomasi dalam pelayanan mahasiswa di Perguruan Tinggi dapat menghasilkan big data. Amanat pemerintah dalam Peraturan Mentri Riset Teknologi dan Pendidikan Tinggi agar besaran Uang Kuliah Tunggal (UKT) di Perguruan Tinggi Negeri dibagi ke dalam 5 kelompok berdasarkan tingkatan kondisi sosial ekonomi orang tua. Dalam proses menetapkan UKT begitu banyak indikator sosial ekonomi orang tua yang harus dijadikan acuan sehingga menyulitkan dalam mengidentifiksi dan mencari formula yang tepat. Untuk mengelompokkan data mahasiswa ini dilakukan dengan teknik data mining menggunakan metode K-Means Clustering. Metode ini mengelompokkan besaran UKT mahasiswa berdasarkan pola atau kemiripan data sosial ekonomi orang tua. Data yang digunakan dalam penelitian ini adalah data calon mahasiswa baru Unversitas Negeri Padang. Pengelompokan ini bertujuan untuk membantu menetapkan besaran UKT calon mahasiswa baru pada Perguruan Tinggi Negeri. Hasil dari penelitian diperoleh 5 kelompok besaran UKT, terdiri dari UKT kategori 1 Rp. 500.000, UKT kategori 2 Rp. 1.000.000, UKT kategori 3 Rp. 2.000.000, UKT kategori 4 Rp. 3.000.000 dan UKT kategori 5 Rp. 4.000.000.  
数据挖掘使用了k - memeling方法来定义单一的学费
数字化和自动化服务中,大学生在大学里可以产生大数据。政府使命在技术研究和高等教育部长,以便规定规模在全国大学学费UKT(单数)分为5组水平根据父母的社会经济条件。设定UKT过程中很多父母的社会经济指标中必须的偏见,这样使得mengidentifiksi和找到合适的配方。对于这个学生分组数据进行数据挖掘技术的使用方法K-Means聚类。这个分类方法规模方面UKT学生根据父母社会经济模式或相似的数据。本研究中使用的是数据大草原国家未来的新生女强人。这个分类旨在帮助设立了规模方面UKT大学新生的国家的候选人。从研究结果5组规模方面UKT UKT组成类别1。50万卢比,UKT类别2 100万卢比,UKT类别3 200万卢比,4到5级UKT 300卢比和UKT类别400万卢比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信