Probabilistic Neural Network Approach for Classifying Ventricular Tachyarrhythmias

Shipra Saraswat, Prasiddhi Shahi
{"title":"Probabilistic Neural Network Approach for Classifying Ventricular Tachyarrhythmias","authors":"Shipra Saraswat, Prasiddhi Shahi","doi":"10.1109/PDGC.2018.8745882","DOIUrl":null,"url":null,"abstract":"Accurate observation of cardiac dysrhythmias are extremely important for clinical applications. Arrhythmias are one of the leading causes of cardiovascular mortality, direct evidences of clinical records has been lacking. Authors of this paper presents a unified approach for classifying ventricular tachyarrhythmias. The methodology adopted by the authors of this work are discrete wavelet transform (DWT) for extracting the features from ECG signals, cross recurrence quantification analysis (CRQA) for calculating the recurrent rate values using the cross recurrence plot (CRP) toolbox of Matlab and probabilistic neural network (PNN) concept for classification of ECG signals.","PeriodicalId":303401,"journal":{"name":"2018 Fifth International Conference on Parallel, Distributed and Grid Computing (PDGC)","volume":"412 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Fifth International Conference on Parallel, Distributed and Grid Computing (PDGC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDGC.2018.8745882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate observation of cardiac dysrhythmias are extremely important for clinical applications. Arrhythmias are one of the leading causes of cardiovascular mortality, direct evidences of clinical records has been lacking. Authors of this paper presents a unified approach for classifying ventricular tachyarrhythmias. The methodology adopted by the authors of this work are discrete wavelet transform (DWT) for extracting the features from ECG signals, cross recurrence quantification analysis (CRQA) for calculating the recurrent rate values using the cross recurrence plot (CRP) toolbox of Matlab and probabilistic neural network (PNN) concept for classification of ECG signals.
分类室性心动过速的概率神经网络方法
对心律失常的准确观察对临床应用极为重要。心律失常是导致心血管疾病死亡的主要原因之一,缺乏临床记录的直接证据。作者提出了一种统一的方法来分类室性心动过速。本文采用离散小波变换(DWT)提取心电信号特征,交叉递归量化分析(CRQA)利用Matlab的交叉递归图(CRP)工具箱计算循环率值,概率神经网络(PNN)概念对心电信号进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信