{"title":"An HSV-Based Visual Analytic System for Data Science on Music and Beyond","authors":"C. Leung, Yibin Zhang","doi":"10.4018/IJACDT.2019010105","DOIUrl":null,"url":null,"abstract":"In the current era of big data, high volumes of a wide variety of valuable data—which may be of different veracities—can be easily generated or collected at a high speed in various real-life applications related to art, culture, design, engineering, mathematics, science, and technology. A data science solution helps manage, analyze, and mine these big data—such as musical data—for the discovery of interesting information and useful knowledge. As “a picture is worth a thousand words,” a visual representation provided by the data science solution helps visualize the big data and comprehend the mined information and discovered knowledge. This journal article presents a visual analytic system—which uses a hue-saturation-value (HSV) color model to represent big data—for data science on musical data and beyond (e.g., other types of big data).","PeriodicalId":181387,"journal":{"name":"Int. J. Art Cult. Des. Technol.","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Art Cult. Des. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJACDT.2019010105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
Abstract
In the current era of big data, high volumes of a wide variety of valuable data—which may be of different veracities—can be easily generated or collected at a high speed in various real-life applications related to art, culture, design, engineering, mathematics, science, and technology. A data science solution helps manage, analyze, and mine these big data—such as musical data—for the discovery of interesting information and useful knowledge. As “a picture is worth a thousand words,” a visual representation provided by the data science solution helps visualize the big data and comprehend the mined information and discovered knowledge. This journal article presents a visual analytic system—which uses a hue-saturation-value (HSV) color model to represent big data—for data science on musical data and beyond (e.g., other types of big data).