An Efficient Corpus Based Part-of-Speech Tagging with GEP

Chengyao Lv, Huihua Liu, Yuanxing Dong
{"title":"An Efficient Corpus Based Part-of-Speech Tagging with GEP","authors":"Chengyao Lv, Huihua Liu, Yuanxing Dong","doi":"10.1109/SKG.2010.42","DOIUrl":null,"url":null,"abstract":"Text corpora which are tagged with part-of-speech (pos) information are useful in many areas of linguistic research. This paper proposes a model of Genetic Expression Programming (GEP) for pos tagging. GEP is used to search for appropriate structures in function space. After the evolution of sequence of tags, GEP can find the best individual as solution. Before simulation, a set of appropriate parameters of algorithm is fitted. Experiments on Brown Corpus show that the proposed model can achieve higher accuracy rate than Genetic Algorithm model and HMM model.","PeriodicalId":105513,"journal":{"name":"2010 Sixth International Conference on Semantics, Knowledge and Grids","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Sixth International Conference on Semantics, Knowledge and Grids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SKG.2010.42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Text corpora which are tagged with part-of-speech (pos) information are useful in many areas of linguistic research. This paper proposes a model of Genetic Expression Programming (GEP) for pos tagging. GEP is used to search for appropriate structures in function space. After the evolution of sequence of tags, GEP can find the best individual as solution. Before simulation, a set of appropriate parameters of algorithm is fitted. Experiments on Brown Corpus show that the proposed model can achieve higher accuracy rate than Genetic Algorithm model and HMM model.
基于GEP的高效语料库词性标注
带有词性信息标记的文本语料库在语言学研究的许多领域都很有用。提出了一种用于词性标注的遗传表达式规划(GEP)模型。GEP用于在函数空间中搜索合适的结构。经过标签序列的演化,GEP可以找到最优的个体作为解。在仿真前,拟合出一组合适的算法参数。在Brown语料库上的实验表明,该模型比遗传算法模型和HMM模型具有更高的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信