3D Pose Estimation of Custom Objects Using Synthetic Datasets

A. Florea, F. Stoican, C. Buiu, C. Oara
{"title":"3D Pose Estimation of Custom Objects Using Synthetic Datasets","authors":"A. Florea, F. Stoican, C. Buiu, C. Oara","doi":"10.1109/ICSTCC55426.2022.9931890","DOIUrl":null,"url":null,"abstract":"3D/6D pose estimation is a novel research area, part of the larger robotics sensing domain, focused on extracting 3D position and 3D rotation information using affordable hardware such as RGB-D or Stereoscopic depth cameras. Most estimators rely internally on a machine learning model for either the object detection phase or the entire 6D pose estimation loop. Thus, a custom machine learning (ML) model and dataset must be constructed and trained respectively in order to achieve the stated goal. The majority of the 3D/6D pose estimation models focus on standardized datasets so a custom dataset must also be created for each model. This article explores the benefits and challenges of artificially generated datasets on one 3D pose estimation model and the ML model transfer learning process. An accuracy test is conducted using real hardware.","PeriodicalId":220845,"journal":{"name":"2022 26th International Conference on System Theory, Control and Computing (ICSTCC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 26th International Conference on System Theory, Control and Computing (ICSTCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSTCC55426.2022.9931890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

3D/6D pose estimation is a novel research area, part of the larger robotics sensing domain, focused on extracting 3D position and 3D rotation information using affordable hardware such as RGB-D or Stereoscopic depth cameras. Most estimators rely internally on a machine learning model for either the object detection phase or the entire 6D pose estimation loop. Thus, a custom machine learning (ML) model and dataset must be constructed and trained respectively in order to achieve the stated goal. The majority of the 3D/6D pose estimation models focus on standardized datasets so a custom dataset must also be created for each model. This article explores the benefits and challenges of artificially generated datasets on one 3D pose estimation model and the ML model transfer learning process. An accuracy test is conducted using real hardware.
使用合成数据集的自定义对象的三维姿态估计
3D/6D姿态估计是一个新的研究领域,是更大的机器人传感领域的一部分,重点是使用价格合理的硬件(如RGB-D或立体深度相机)提取3D位置和3D旋转信息。大多数估计器内部依赖于机器学习模型来完成物体检测阶段或整个6D姿态估计循环。因此,为了实现既定目标,必须分别构建和训练自定义机器学习(ML)模型和数据集。大多数3D/6D姿态估计模型侧重于标准化数据集,因此还必须为每个模型创建自定义数据集。本文探讨了人工生成数据集在一个3D姿态估计模型和ML模型迁移学习过程中的好处和挑战。在实际硬件上进行了精度测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信