Evaluation of Dimensionality Reduction Techniques for Big data

R. Ramachandran, Gopika Ravichandran, Aswathi Raveendran
{"title":"Evaluation of Dimensionality Reduction Techniques for Big data","authors":"R. Ramachandran, Gopika Ravichandran, Aswathi Raveendran","doi":"10.1109/ICCMC48092.2020.ICCMC-00043","DOIUrl":null,"url":null,"abstract":"In this digital era, big data has very high dimension and requires large amount of space for its data storage. Hence a lossless data interpretation will be difficult when big data contains large dimension. But, all these dimensions in big data may not be relevant or they may be interrelated and hence redundancy may exist in attribute set. Dimensionality reduction is a technique which focusses on downsizing the attributes and complication of a high dimensional data. In this paper, a detailed study of different dimensionality reduction techniques namely principal component analysis (PCA), linear discriminant analysis (LDA), kernel principal component analysis (KPCA), singular value decomposition (SVD), independent component analysis (ICA) has been proposed. Furthermore, it also provides comparative analysis based on various parameters.","PeriodicalId":130581,"journal":{"name":"2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCMC48092.2020.ICCMC-00043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this digital era, big data has very high dimension and requires large amount of space for its data storage. Hence a lossless data interpretation will be difficult when big data contains large dimension. But, all these dimensions in big data may not be relevant or they may be interrelated and hence redundancy may exist in attribute set. Dimensionality reduction is a technique which focusses on downsizing the attributes and complication of a high dimensional data. In this paper, a detailed study of different dimensionality reduction techniques namely principal component analysis (PCA), linear discriminant analysis (LDA), kernel principal component analysis (KPCA), singular value decomposition (SVD), independent component analysis (ICA) has been proposed. Furthermore, it also provides comparative analysis based on various parameters.
大数据降维技术评价
在这个数字时代,大数据具有非常高的维度,需要大量的数据存储空间。因此,当大数据包含大维度时,对数据进行无损解释将是困难的。但是,在大数据中,这些维度可能是不相关的,也可能是相互关联的,因此属性集可能存在冗余。降维是一种致力于降低高维数据属性和复杂性的技术。本文对不同的降维技术,即主成分分析(PCA)、线性判别分析(LDA)、核主成分分析(KPCA)、奇异值分解(SVD)、独立成分分析(ICA)进行了详细研究。此外,还提供了基于各参数的对比分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信