On the Performance of the Nonsynaptic Backpropagation for Training Long-term Cognitive Networks

Gonzalo N´apoles, Isel Grau, Leonardo Concepci´on, Yamisleydi Salgueiro
{"title":"On the Performance of the Nonsynaptic Backpropagation for Training Long-term Cognitive Networks","authors":"Gonzalo N´apoles, Isel Grau, Leonardo Concepci´on, Yamisleydi Salgueiro","doi":"10.1049/icp.2021.1434","DOIUrl":null,"url":null,"abstract":"Long-term Cognitive Networks (LTCNs) are recurrent neural networks for modeling and simulation. Such networks can be trained in a synaptic or nonsynaptic mode according to their goal. Nonsynaptic learning refers to adjusting the transfer function parameters while preserving the weights connecting the neurons. In that regard, the Nonsynaptic Backpropagation (NSBP) algorithm has proven successful in training LTCN based models. Despite NSBP's success, a question worthy of investigation is whether the backpropagation process is necessary when training these recurrent neural networks. This paper investigates this issue and presents three nonsynaptic learning methods that modify the original algorithm. In addition, we perform a sensitivity analysis of both the NSBP's hyperparameters and the LTCNs' learnable parameters. The main conclusions of our study are i) the backward process attached to the NSBP algorithm is not necessary to train these recurrent neural systems, and ii) there is a nonsynaptic learnable parameter that does not contribute significantly to the LTCNs' performance.","PeriodicalId":431144,"journal":{"name":"11th International Conference of Pattern Recognition Systems (ICPRS 2021)","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"11th International Conference of Pattern Recognition Systems (ICPRS 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/icp.2021.1434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Long-term Cognitive Networks (LTCNs) are recurrent neural networks for modeling and simulation. Such networks can be trained in a synaptic or nonsynaptic mode according to their goal. Nonsynaptic learning refers to adjusting the transfer function parameters while preserving the weights connecting the neurons. In that regard, the Nonsynaptic Backpropagation (NSBP) algorithm has proven successful in training LTCN based models. Despite NSBP's success, a question worthy of investigation is whether the backpropagation process is necessary when training these recurrent neural networks. This paper investigates this issue and presents three nonsynaptic learning methods that modify the original algorithm. In addition, we perform a sensitivity analysis of both the NSBP's hyperparameters and the LTCNs' learnable parameters. The main conclusions of our study are i) the backward process attached to the NSBP algorithm is not necessary to train these recurrent neural systems, and ii) there is a nonsynaptic learnable parameter that does not contribute significantly to the LTCNs' performance.
非突触反向传播在长期认知网络训练中的性能研究
长期认知网络(LTCNs)是用于建模和仿真的递归神经网络。这样的网络可以根据它们的目标以突触或非突触模式进行训练。非突触学习是指在保持连接神经元的权值的同时调整传递函数参数。在这方面,非突触反向传播(NSBP)算法在训练基于LTCN的模型中已经被证明是成功的。尽管NSBP取得了成功,但一个值得研究的问题是,在训练这些递归神经网络时,反向传播过程是否必要。本文对这一问题进行了研究,提出了三种改进原算法的非突触学习方法。此外,我们对NSBP的超参数和LTCNs的可学习参数进行了敏感性分析。我们研究的主要结论是:i) NSBP算法的后向过程对于训练这些递归神经系统是不必要的;ii)存在一个非突触可学习参数,该参数对LTCNs的性能没有显著贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信