{"title":"OrbitCast: Exploiting Mega-Constellations for Low-Latency Earth Observation","authors":"Zeqi Lai, Qianxia Wu, Hewu Li, M. Lv, Jianping Wu","doi":"10.1109/ICNP52444.2021.9651919","DOIUrl":null,"url":null,"abstract":"Satellite-based Earth Observation (EO) systems are gaining popularity and widely used in many time-sensitive scenarios, including disaster monitoring, emergency response, forecasting and defense. Existing efforts for gathering EO data mainly rely on either ground station networks or geostationary (GEO) satellites. However, our quantitative analysis reveals that existing approaches are either limited as their achievable latency is far away from the desired value due to the insufficient coverage of ground stations, or hard to scale as the number of sensing satellites increases because of the high cost of GEO satellite relays.This paper explores the feasibility and performance of a novel approach that leverages emerging low Earth orbit (LEO) constellations to enable low-latency and scalable EO data delivery from space. We present OrbitCast, a hybrid EO data delivery architecture upon LEO constellations and geo-distributed ground stations to forward EO data from the source remote sensing satellite to a collection of end users. To handle the network dynamicity caused by LEO satellite movements and achieve stable communication over the satellite network, we propose a geo-location driven scheme to forward and deliver data packets. To demonstrate the effectiveness of OrbitCast, we build a testbed driven by public constellation information and implement the OrbitCast prototype on top of the testbed. Extensive realistic-data-driven simulations demonstrate that OrbitCast can significantly reduce the latency as compared to other state-of-the-art approaches, and complete the data delivery within five minutes for representative EO data traffic.","PeriodicalId":343813,"journal":{"name":"2021 IEEE 29th International Conference on Network Protocols (ICNP)","volume":"197 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 29th International Conference on Network Protocols (ICNP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNP52444.2021.9651919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20
Abstract
Satellite-based Earth Observation (EO) systems are gaining popularity and widely used in many time-sensitive scenarios, including disaster monitoring, emergency response, forecasting and defense. Existing efforts for gathering EO data mainly rely on either ground station networks or geostationary (GEO) satellites. However, our quantitative analysis reveals that existing approaches are either limited as their achievable latency is far away from the desired value due to the insufficient coverage of ground stations, or hard to scale as the number of sensing satellites increases because of the high cost of GEO satellite relays.This paper explores the feasibility and performance of a novel approach that leverages emerging low Earth orbit (LEO) constellations to enable low-latency and scalable EO data delivery from space. We present OrbitCast, a hybrid EO data delivery architecture upon LEO constellations and geo-distributed ground stations to forward EO data from the source remote sensing satellite to a collection of end users. To handle the network dynamicity caused by LEO satellite movements and achieve stable communication over the satellite network, we propose a geo-location driven scheme to forward and deliver data packets. To demonstrate the effectiveness of OrbitCast, we build a testbed driven by public constellation information and implement the OrbitCast prototype on top of the testbed. Extensive realistic-data-driven simulations demonstrate that OrbitCast can significantly reduce the latency as compared to other state-of-the-art approaches, and complete the data delivery within five minutes for representative EO data traffic.