Multiview social behavior analysis in work environments

Chih-Wei Chen, H. Aghajan
{"title":"Multiview social behavior analysis in work environments","authors":"Chih-Wei Chen, H. Aghajan","doi":"10.1109/ICDSC.2011.6042910","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an approach that fuses information from a network of visual sensors for the analysis of human social behavior. A discriminative interaction classifier is trained based on the relative head orientation and distance between a pair of people. Specifically, we explore human interaction detection at different levels of feature fusion and decision fusion. While feature fusion mitigates local errors and improves feature accuracy, decision fusion at higher levels significantly reduces the amount of information to be shared among cameras. Experiment results show that our proposed method achieves promising performance on a challenging dataset. By distributing the computation over multiple smart cameras, our approach is not only robust but also scalable.","PeriodicalId":385052,"journal":{"name":"2011 Fifth ACM/IEEE International Conference on Distributed Smart Cameras","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Fifth ACM/IEEE International Conference on Distributed Smart Cameras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSC.2011.6042910","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

In this paper, we propose an approach that fuses information from a network of visual sensors for the analysis of human social behavior. A discriminative interaction classifier is trained based on the relative head orientation and distance between a pair of people. Specifically, we explore human interaction detection at different levels of feature fusion and decision fusion. While feature fusion mitigates local errors and improves feature accuracy, decision fusion at higher levels significantly reduces the amount of information to be shared among cameras. Experiment results show that our proposed method achieves promising performance on a challenging dataset. By distributing the computation over multiple smart cameras, our approach is not only robust but also scalable.
工作环境中的多视角社会行为分析
在本文中,我们提出了一种融合视觉传感器网络信息的方法,用于分析人类社会行为。基于相对头部方向和两个人之间的距离,训练了判别交互分类器。具体来说,我们探索了不同层次的特征融合和决策融合的人类交互检测。虽然特征融合减轻了局部错误并提高了特征准确性,但更高级别的决策融合显着减少了相机之间共享的信息量。实验结果表明,该方法在具有挑战性的数据集上取得了良好的性能。通过将计算分布在多个智能摄像头上,我们的方法不仅健壮,而且具有可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信