On The Arabic Dialects’ Identification: Overcoming Challenges of Geographical Similarities Between Arabic dialects and Imbalanced Datasets

Salma Jamal, Aly M. Kassem, Omar Mohamed, Ali Ashraf
{"title":"On The Arabic Dialects’ Identification: Overcoming Challenges of Geographical Similarities Between Arabic dialects and Imbalanced Datasets","authors":"Salma Jamal, Aly M. Kassem, Omar Mohamed, Ali Ashraf","doi":"10.18653/v1/2022.wanlp-1.49","DOIUrl":null,"url":null,"abstract":"Arabic is one of the world’s richest languages, with a diverse range of dialects based on geographical origin. In this paper, we present a solution to tackle subtask 1 (Country-level dialect identification) of the Nuanced Arabic Dialect Identification (NADI) shared task 2022 achieving third place with an average macro F1 score between the two test sets of 26.44%. In the preprocessing stage, we removed the most common frequent terms from all sentences across all dialects, and in the modeling step, we employed a hybrid loss function approach that includes Weighted cross entropy loss and Vector Scaling(VS) Loss. On test sets A and B, our model achieved 35.68% and 17.192% Macro F1 scores, respectively.","PeriodicalId":355149,"journal":{"name":"Workshop on Arabic Natural Language Processing","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Arabic Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.wanlp-1.49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Arabic is one of the world’s richest languages, with a diverse range of dialects based on geographical origin. In this paper, we present a solution to tackle subtask 1 (Country-level dialect identification) of the Nuanced Arabic Dialect Identification (NADI) shared task 2022 achieving third place with an average macro F1 score between the two test sets of 26.44%. In the preprocessing stage, we removed the most common frequent terms from all sentences across all dialects, and in the modeling step, we employed a hybrid loss function approach that includes Weighted cross entropy loss and Vector Scaling(VS) Loss. On test sets A and B, our model achieved 35.68% and 17.192% Macro F1 scores, respectively.
阿拉伯方言识别:克服阿拉伯方言地理相似性和不平衡数据集的挑战
阿拉伯语是世界上最丰富的语言之一,根据地理来源有各种各样的方言。在本文中,我们提出了解决细微差别阿拉伯方言识别(NADI)共享任务2022的子任务1(国家级方言识别)的解决方案,以两个测试集之间的平均宏观F1分数26.44%获得了第三名。在预处理阶段,我们从所有方言的所有句子中删除了最常见的频繁术语,在建模步骤中,我们采用了混合损失函数方法,包括加权交叉熵损失和向量缩放(VS)损失。在测试集A和B上,我们的模型分别获得了35.68%和17.192%的Macro F1分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信