A universal-algebraic proof of the complexity dichotomy for Monotone Monadic SNP

M. Bodirsky, Florent R. Madelaine, A. Mottet
{"title":"A universal-algebraic proof of the complexity dichotomy for Monotone Monadic SNP","authors":"M. Bodirsky, Florent R. Madelaine, A. Mottet","doi":"10.1145/3209108.3209156","DOIUrl":null,"url":null,"abstract":"The logic MMSNP is a restricted fragment of existential second-order logic which allows to express many interesting queries in graph theory and finite model theory. The logic was introduced by Feder and Vardi who showed that every MMSNP sentence is computationally equivalent to a finite-domain constraint satisfaction problem (CSP); the involved probabilistic reductions were derandomized by Kun using explicit constructions of expander structures. We present a new proof of the reduction to finite-domain CSPs that does not rely on the results of Kun. This new proof allows us to obtain a stronger statement and to verify the Bodirsky-Pinsker dichotomy conjecture for CSPs in MMSNP. Our approach uses the fact that every MMSNP sentence describes a finite union of CSPs for countably infinite ω-categorical structures; moreover, by a recent result of Hubička and Nešetřil, these structures can be expanded to homogeneous structures with finite relational signature and the Ramsey property. This allows us to use the universal-algebraic approach to study the computational complexity of MMSNP.","PeriodicalId":389131,"journal":{"name":"Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3209108.3209156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

Abstract

The logic MMSNP is a restricted fragment of existential second-order logic which allows to express many interesting queries in graph theory and finite model theory. The logic was introduced by Feder and Vardi who showed that every MMSNP sentence is computationally equivalent to a finite-domain constraint satisfaction problem (CSP); the involved probabilistic reductions were derandomized by Kun using explicit constructions of expander structures. We present a new proof of the reduction to finite-domain CSPs that does not rely on the results of Kun. This new proof allows us to obtain a stronger statement and to verify the Bodirsky-Pinsker dichotomy conjecture for CSPs in MMSNP. Our approach uses the fact that every MMSNP sentence describes a finite union of CSPs for countably infinite ω-categorical structures; moreover, by a recent result of Hubička and Nešetřil, these structures can be expanded to homogeneous structures with finite relational signature and the Ramsey property. This allows us to use the universal-algebraic approach to study the computational complexity of MMSNP.
单调一元SNP复杂度二分的一般代数证明
逻辑MMSNP是存在二阶逻辑的一个受限制的片段,它允许表达图论和有限模型论中许多有趣的查询。该逻辑由Feder和Vardi引入,他们表明每个MMSNP句子在计算上等效于一个有限域约束满足问题(CSP);所涉及的概率约简由Kun使用显式构造展开器结构进行非随机化。我们提出了一个不依赖于Kun结果的有限域csp约简的新证明。这一新的证明使我们得到了一个更有力的声明,并验证了MMSNP中csp的Bodirsky-Pinsker二分猜想。我们的方法利用了这样一个事实,即每个MMSNP句子描述了可数无限ω-范畴结构的csp的有限联合;此外,通过hubi ka和Nešetřil的最新结果,这些结构可以扩展为具有有限关系签名和Ramsey性质的齐次结构。这允许我们使用通用代数方法来研究MMSNP的计算复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信