{"title":"On Dynamic Spectral Risk Measures and a Limit Theorem","authors":"D. Madan, M. Pistorius, M. Stadje","doi":"10.2139/ssrn.2635636","DOIUrl":null,"url":null,"abstract":"In this paper we explore a novel way to combine the dynamic notion of time-consistency with the static notion of quantile-based coherent risk-measure or spectral risk measure, of which Expected Shortfall is a prime example. We introduce a class of dynamic risk measures in terms of a certain family of g-expectations driven by Wiener and Poisson point processes. In analogy with the static case, we show that these risk measures, which we label dynamic spectral risk measures, are locally law-invariant and additive on the set of pathwise increasing random variables. We substantiate the link between dynamic spectral risk measures and their static counterparts by establishing a limit theorem for general path-functionals which shows that such dynamic risk measures arise as limits under vanishing time-step of iterated spectral risk measures driven by approximating lattice random walks. This involves a certain non-standard scaling of the corresponding spectral weight-measures that we identify explicitly.","PeriodicalId":145189,"journal":{"name":"Robert H. Smith School of Business Research Paper Series","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robert H. Smith School of Business Research Paper Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2635636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
Abstract
In this paper we explore a novel way to combine the dynamic notion of time-consistency with the static notion of quantile-based coherent risk-measure or spectral risk measure, of which Expected Shortfall is a prime example. We introduce a class of dynamic risk measures in terms of a certain family of g-expectations driven by Wiener and Poisson point processes. In analogy with the static case, we show that these risk measures, which we label dynamic spectral risk measures, are locally law-invariant and additive on the set of pathwise increasing random variables. We substantiate the link between dynamic spectral risk measures and their static counterparts by establishing a limit theorem for general path-functionals which shows that such dynamic risk measures arise as limits under vanishing time-step of iterated spectral risk measures driven by approximating lattice random walks. This involves a certain non-standard scaling of the corresponding spectral weight-measures that we identify explicitly.